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We present rigorous results for several variants of the Hubbard model in the
strong-coupling regime. We establish a mathematically controlled perturbation
expansion which shows how previously proposed effective interactions are,
in fact, leading-order terms of well-defined (volume-independent) unitarily
equivalent interactions. In addition, in the very asymmetric (Falicov�Kimball)
regime, we are able to apply recently developed phase-diagram technology
(quantum Pirogov�Sinai theory) to conclude that the zero-temperature phase
diagrams obtained for the leading classical part remain valid, except for thin
excluded regions and small deformations, for the full-fledged quantum interac-
tion at zero or low temperature. Moreover, the phase diagram is stable against
addition of arbitrary, but sufficiently small further quantum terms that do not
break the ground-state symmetries. This generalizes and unifies a number of
previous results on the subject; in particular, published results on the zero-tem-
perature phase diagram of the Falikov�Kimball model (with and without
magnetic flux) are extended to small temperatures and�or small ionic hopping.
We give explicit expressions for the first few orders, in the hopping amplitude,
of equivalent interactions, and we describe the resulting phase diagram. Our
approach yields algorithms to compute equivalent interactions to arbitrarily
high order in the hopping amplitude.

KEY WORDS: Tight-binding models; one-band Hubbard models; three-
band Hubbard models; perturbation expansions; phase diagrams; Pirogov�Sinai
theory.
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1. INTRODUCTION

1.1. Scope of the Paper

In this paper we present rigorous results for several variants of the Hubbard
model in the strong-coupling regime. For a general class of Hubbard-type
models, we construct effective Hamiltonians with explicit exchange inter-
action terms by using unitary conjugations obtained from convergent per-
turbation expansions. Furthermore, we determine ground states and low-
temperature phases in the asymmetric (Falicov�Kimball) regime. Our
results are applications of tools recently developed in refs. 11 and 12 for the
rigorous study of quantum statistical mechanical lattice systems. These
tools can be applied to systems with finite-volume Hamiltonians of the
form H4=H04+V4 , where: (1) the dominant part, H04 , is ``classical''��in
the sense of being diagonal in a tensor-product basis (see Section 2.2
below)��and has a known energy spectrum with spectral gaps uniformly
positive in the volume 4/Z&, and (2) the perturbation, V4 , must be small
in a sense to be made precise below, but can be rather general. In par-
ticular, it may involve interactions of infinite range as long as some
exponential-decay condition [(2.20) below] is satisfied. For the (one-band)
Hubbard-type models to be studied in this paper, H04 involves only on-site
terms and the perturbation is just nearest-neighbor hopping. These models
rank among the simplest applications of our conjugation method. To
illustrate a slightly more complicated application, we also analyze the
3-band Hubbard model.

The methodology used in this paper has two parts: (I) a rigorously
controlled perturbation expansion, the ``conjugation method,'' designed to
approximately block-diagonalize the Hamiltonians of quantum lattice
systems in a spectral range correponding to low energies, and (II) a theory
of stability of phases and phase diagrams known as quantum Pirogov�Sinai
theory. Part (I) yields a perturbative expansion with mathematically con-
trolled error terms, which agrees, to leading orders, with well known
expansions.(8, 26, 33, 45, 9, 10, 19, 37) Part (II) allows us to extend��and rederive
in a more systematic fashion��rigorous results on low-temperature phase
diagrams for models such as the Falicov�Kimball model.(32, 20, 21, 36, 31, 38, 23)

Part (I) of our method has a precursor in the method of dressing transfor-
mations; (see refs. 15 and 17). Dressing transformations have been used
successfully in the study of quantum lattice systems by Albanese.(1�3)

In the statistical mechanics of classical lattice systems, there exist
efficient methods and well tested intuitions to determine and describe
ground states and equilibrium states. The mathematical study of quantum
lattice systems is less advanced. The loss of the probabilistic framework
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��noncommuting observables, complex-valued expectations��necessarily
makes an analysis more abstract, and often there is a divorce between the
simple and concrete intuitions practitioners resort to and a mathematical
approach suitable for rigorous proofs.

The study of quantum perturbations of classical systems offers an
excellent opportunity to establish a bridge between the classical and quan-
tum formalisms and to extend techniques and intuitions from the classical
realm to the quantum realm in a mathematically controlled manner. This
is, in essence, what our methods accomplish.

Of course, the scope of such methods is limited. They are inadequate
to rigorously study strong quantum-mechanical correlations, such as those
appearing in Fermi liquids or superconductors, or to analyze the spon-
taneous breaking of continuous symmetries. To be more specific, our per-
turbation expansions and quantum Pirogov Sinai theory converge only if
the quantum perturbation V4 is small, in a sense explained later in this
paper, as compared to the classical Hamiltonian H04 . But the perturbation
expansion enables us to decompose the Hamiltonian H4 into an effective
classical Hamiltonian and a quantum perturbation in a way that takes into
account how the original perturbation V4 lifts degeneracies in the energy
spectrum of the original classical Hamiltonian H04 . In particular, it enables
us to show how��as a consequence of the Pauli principle��effective
exchange interactions are generated, starting from a Hamiltonian with spin-
independent interactions, such as the Hubbard Hamiltonian. The key idea
underlying our perturbation technique is to perturbatively construct a
unitary conjugation of the original Hamiltonian which block-diagonalizes it
up to some finite order in the quantum perturbation. It is analogous to
Nekhoroshev's method in classical mechanics. The goal of the method is to
unitarily conjugate the original Hamiltonian to an effective Hamiltonian of
a form that enables us to apply quantum Pirogov�Sinai theory. As a result,
we are able to study genuine quantum effects.

The main purpose of this paper is to illustrate the perturbation techni-
que (I) and quantum Pirogov Sinai theory (II) by analyzing concrete
models, such as Hubbard-type models, of interest in condensed matter
physics. Further applications can be found in refs. 12 and 16.

We emphasize that the two methods, (I) and (II) above, used in this
paper are independent of each other. The perturbation method can be
applied whenever the leading classical Hamiltonian has an appropriate,
essentially volume-independent discrete low-energy spectrum and its
ground states simultaneously minimize all local contributions to the classi-
cal Hamiltonian (technically, the classical Hamiltonian is assumed to be
defined by a so-called m-potentials(27)��see Section 2), and the quantum
perturbation is ``small'' (see Section 2). It may or may not happen that the
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transformed Hamiltonian, the ``effective'' Hamiltonian, is in a form suitable
for the application of quantum Pirogov Sinai theory. If it is, then we are
able to rigorously investigate the low-temperature phase diagram in certain
regions of the space of thermodynamic parameters. But even if it is not in
a form enabling us to apply method (II), it may nevertheless yield new
insight into the structure of ground states or low-temperature equilibrium
states (by enabling us to e.g., appeal to ``educated guesses''). As mentioned,
the effective Hamiltonian may, for example, include exchange interactions
between spins��absent in the original Hamiltonian��that enable one to
determine, at least heuristically, the type of magnetic ordering of the
ground states. We are confident that our perturbation method will be use-
ful in providing suitable effective Hamiltonians as starting points for alter-
native approaches to the study of phase diagrams, such as renormalization
group methods.

Recently, an alternative, but related, approach has been put forward
in ref. 35 for the analysis of quantum degeneracy-breaking effects. This
approach, based on a contour representation very similar to ours, (5) resorts
to a resummation of contours representing low-level excitations to obtain
a classical effective potential created by the quantum perturbation. In this
approach, the perturbative and the contour expansions are closely
entangled: the method only works if the resulting effective potential satisfies
the hypotheses required by quantum Pirogov�Sinai theory. It is not
designed to systematically generate effective Hamiltonians, as in Tables 1
and 2 below. But this alternative approach is a useful first step towards a
quantum extension of the theory of restricted ensembles.(6, 44)

A number of delicate concepts are involved when designing mathe-
matically controlled approaches. Some of them are discussed below (Sec-
tions 2.1 and 4.1). We would like to start here with a general remark
related to the infinite-volume limit: As we are after statistical mechanical
properties (phases, phase transitions), we have to pass, eventually, to the
thermodynamic limit. This implies that we need to cope with Hamiltonians
for arbitrarily large volumes 4, e.g., arbitrarily large squares. To achieve
this, we shall adopt the following two ``principles:''

(P1) We shall attempt to establish estimates or bounds that hold
uniformly for sufficiently large volumes.

(P2) Instead of working at the level of Hamiltonians, we shall work
with so-called interactions, which are families of local operators [8X :
X/Z& finite] (so-called |X |-body terms), in terms of which the
Hamiltonians are given by H4=�X & 4{< 8X . Interactions are defined with-
out reference to the total volume of the system. Hence operations performed
on interactions automatically apply to all finite-volume Hamiltonians.
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Next, we proceed to introducing some of the models studied in this
paper and to summarizing our main results.

1.2. Models and results

1.2.1. One-Band Hubbard Model. We shall study the one-band
Hubbard model and some of its variants. These are models of two types of
fermions��which, for concreteness, will be called spin-up and spin-down
electrons, but which can also be considered to be different species of par-
ticles, like ions and spin-polarized electrons��whose quantum dynamics, on
a finite square lattice 4, is governed by the Hamiltonian

H4=U :
x # 4

nx+ nx& &++ :
x # 4

nx+&+& :
x # 4

nx&

& :
(xy)

:
_=+, &

[t[xy]
_ c-

x_cy_+t[ yx]
_ c-

y_ cx_] (1.1)

Here c-
x_ and cx_ are electron creation- and annihilation operators satis-

fying the usual anticommutation relations [see (2.9)�(2.10)]. The number
operator of an electron of spin _=+, & at the site x is nx_=c-

x_ cx_ . The
chemical potentials of the electrons with up-spin and down-spin are
denoted by ++ and +& , respectively. The symbol (xy) (resp. [xy])
denotes an unordered (resp. ordered) pair of nearest neighbor sites of the
lattice.

The Hubbard model is the simplest model believed to embody the
essential physics governing strongly correlated electron liquids. It exhibits
the interplay between Coulomb repulsion and the kinetic energy term of
electrons. The model is widely studied in the context of phenomena such as
magnetism and high-Tc superconductivity, which are believed to result
from such an interplay. It is a lattice model of interacting fermions in the
tight-binding approximation. The model retains only that part of the
(screened) Coulomb repulsion which manifests itself when two electrons of
opposite spin occupy the same lattice site, the strength of this interaction
being given by the coupling constant U. The kinetic energy term describes
the hopping of electrons between nearest-neighbor sites. We allow a direc-
tion-dependent hopping: the hopping amplitude of electrons of spin _ from
a site x to a site y is denoted by the symbol t[ yx]

_ . For the Hamiltonian to
be self-adjoint, t[ yx]

_ must be the complex-conjugate of t[xy]
_ . Complex

hopping amplitudes are encountered in the presence of an external magnetic
field.

If t[ yx]
+ =t[ yx]

& the Hamiltonian (1.1) does not change under a rotation
of the spin quantization axis. Hence the model has an SU(2) symmetry.
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This is the case for the standard one band Hubbard model for which
t[ yx]

+ =t[xy]
& =t, for all nearest neighbor sites x, y. The highly asymmetric

regime |t[ yx]
+ |<<|t[ yx]

& | will be called the Falicov�Kimball regime. The
limiting case t[ yx]

+ =0 constitutes the Falicov�Kimball model (with
magnetic flux(23)). In this setting, up-spin electrons are interpreted as static
ions, while down-spin electrons are viewed as scalar quantum-mechanical
particles. If the magnetic flux is zero, t[ yx]

& is real and independent of x, y.
We study the model (1.1) in the strong coupling limit U>>|t[ yx]

_ |.
This corresponds to the situation in which the Coulomb repulsion is much
larger than the bandwidth of (uncorrelated) electrons. The large on-site
repulsion forbids double occupancy of a site at zero temperature. In this
limit, the terms in the first line on the RHS of (1.1) act as a leading classi-
cal part, H04 , while the hopping term can be treated as a perturbation, V4 .
As we shall see, this gives rise to a relatively simple application of our per-
turbation scheme, due to the on-site character of the leading interaction.

To discuss our results, we first present the zero-temperature phase
diagram of the dominant part, H04 , of the Hamiltonian, in the plane of the
chemical potentials. This is a purely classical interaction, and ground states
are tensor products of single-site spin states minimizing each on-site term.
It is given in Fig. 1. The symbols [+], [&], [\] and [0] are used to
denote ground states of H04 in which each lattice site is occupied by an
up-spin electron, a down-spin electron, two electrons of opposite spins and
no electron, respectively. All the boundary lines in this phase diagram are

Fig. 1. Zero-temperature phase diagram for H04=U �x # 4 nx+ nx& &++ �x # 4 nx+ &
+& �x # 4 nx& . Ground states are defined by spin configurations, which at each site are as
denoted in curly brackets.
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lines of infinite degeneracy; e.g., for 0<++=+&<U the ground state is
infinitely degenerate, because all singly occupied configurations are equally
likely. The point ++=+&=0 (origin) and the point ++=+&=U also
correspond to infinitely many ground states. At the origin, each site is
either empty or singly occupied, whereas, at the point (U, U ), each site is
either singly or doubly occupied. Next, we describe our results for the
Hubbard model.

(I) Controlled Perturbation Expansion. We restrict our attention to
those values of the chemical potentials for which the spectrum of the
Hamiltonian H04 can be decomposed into two spectral bands separated by
an energy gap which is large compared to the hopping amplitudes. We dis-
cuss mainly the half-filled regime (Section 3), for which the lower band
corresponds to the subspace of states with singly occupied sites. In this
regime, to have a large-enough spectral gap, we must consider a region in
the positive quadrant in the plane of chemical potentials in which +0<++ ,
+&<U&+0 , where +0>>|t[ yx]

_ |. This is the shaded region in the plane of
chemical potentials shown in Fig. 2.

For values of the chemical potentials in this shaded region, we deter-
mine, for each finite order n, an interaction [8(n)

X ] that is

(R1) equivalent to the one corresponding to (1.1), i.e., it gives rise to
Hamiltonians related to (1.1) by a unitary transformation, and

Fig. 2. Shaded region to which we restrict most of the analysis of the generalized Hubbard
model (1.1).
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(R2) block-diagonal to order tn�U n&1, where t=supx, y [ |t[ yx]
& |,

|t[ yx]
+ |], in the sense that the matrix elements of the operators 8 (n)

X between
the lower and higher bands (of H04) are of the prescribed order.

Transformations of this sort have been devised before, see for instance
refs. 8, 26, 33, 45, 9, 10, 19, and 37, though not in a manner suited for
rigorous analysis, as we comment upon below, in Section 2.1. Our expres-
sions, obtained with the technique developed in ref. 12, yield, when restricted
to the lower band, the well known leading order terms: Heisenberg inter-
action + terms of order t4�U 3 favoring valence-bond states (and breaking
the degeneracy among those) + terms of order t6�U 5+ } } } . In particular,
they coincide exactly with those of ref. 37, in the half-filled regime. (Our
approach can be viewed as a mathematical justification of the series
proposed there.) Nevertheless, each transformed interaction [8 (n)

X ] has
terms, 8 (n)

X {0, with arbitrarily large |X | but correspondingly small order
in t�U, which have been largely ignored sin the literature. They are,
however, crucial if one wants to determine whether [8 (n)

X ] is indeed an
honest interaction or only some auxiliary object corresponding to the first
few terms in an asymptotic series. Our approach is designed to settle such
issues. In fact, it yields complete mathematical control over the transformed
interactions (and the unitary transformations giving rise to them):

(a) We obtain explicit bounds for the error terms, and show that
each transformed interaction [8 (n)

X ] is well defined in the strong-coupling
regime. (In fact, it is exponentially summable.) We provide explicit estima-
tions of the radius of convergence, t0(n), and of the exponential decay of
the terms 8 (n)

X in the diameter of X.

(b) We provide explicit algorithms to construct the full interaction
[8 (n)

X ], not only its first few orders (restricted to the lowest band).

As we work in terms of interactions, all the expressions, bounds and
estimations are, of course, independent of the volume. For the Falicov�
Kimball regime, our analysis implies the various estimations obtained, by
more cumbersome means, in previous studies of the model(32, 20, 21, 36, 31, 38, 23)

(see also the review in ref. 22).
Similar calculations, that we leave to the reader, can be done in the

region of the plane of chemical potentials close to the origin. The low-lying
band is now formed by states with no doubly occupied sites. This yields a
family of transformed interactions [8� (n)

X ] whose restrictions to the lower
band yield the well known perturbation series often associated with the
keyword ``Gutzwiller projections.'' In fact, these series, which start with the
very popular t&J interaction plus (usually neglected) three-site terms, are
the ones usually reported in the physics literature (see, e.g., refs. 26, 9, 10,
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and 37). The half-filled case discussed above is obtained after a further pro-
jection onto the half-filled band. Our formalism has, in relation to previous
publications, the advantages (a) and (b) described above.

(II) Phase Diagram at Low Temperatures. We are able to infer
low-temperature properties of the model (1.1), in the strong coupling
regime, in the shaded region of Fig. 3, namely away from the manifolds of
coexistence of ground states, and at and near the segment along the line
++=+& , as long as we stay clear of its infinitely degenerate endpoints. As
we work with contour arguments, we restrict our attention to dimensions
d�2 and hopping amplitudes t[ yx]

_ that are periodic with respect to trans-
lations of the sites x, y. Of course, rigorous control of the ground states
and low-temperature equilibrium states on the ``unperturbed '' coexistence
line ++=+& with the help of contour expansions will be achieved only for
the models without continuous SU(2)-symmetry. We shall prove the follow-
ing results:

(R3) Inside the (open) regions where H04 has a unique ground state,
we apply the cluster expansion developed in ref. 11, Section 6, to con-
clude that the ground state is stable for small hopping amplitudes and at
low temperatures. That is, in these ranges, one finds an equilibrium state
for which the observables have expectations close to their values for the
corresponding ground state. Such a state can be constructed as the limit of
a sequence of states associated with finite boxes with a ground state con-
figuration as boundary condition, and the cluster expansion allows for a
visualization (in a very precise sense) of the state as ``ground state + quan-
tum and thermal fluctuations.''

(R4) For the Falicov�Kimball regime, |t[ yx]
+ |<<|t[ yx]

& |, we can
apply the Pirogov Sinai approach developed in refs. 11 and 12 in conjunc-
tion with the transformed interactions [8 (n)

X ] described above, to analyze
the shaded region of Fig. 3 at or close to the line ++=+& , for strong
Coulomb coupling U. In this way we recover and extend a number of pre-
viously published results, prove some expected features of the low-tem-
perature phase diagram and open the way for further systematic analysis of
the latter.

In more detail, the results alluded to in (R4) are as follows.

Falicov�Kimball Model Without Flux (t[ yx]
& =t for all x, y): (R4.1) As

soon as t{0, the quantum hopping breaks the infinite-degeneracy present
on the line 0<++=+&<U. Instead two Ne� el-ordered ground states
appear on this line, and in its neighborhood, and remain stable for low
temperatures. For the Falicov�Kimball model itself (i.e., when t[ yx]

+ is
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Fig. 3. Region (shown shaded) where low-temperature properties of the model (1.1) are
determined in the strong-coupling regime.

exactly zero), this fact has been proven in ref. 32 for chemical potentials on
the line itself, and in ref. 36 for potentials in its vicinity. Our methods show
that the same is true even if one adds some small ionic hopping (a fact that
also follows from the treatment in ref. 38) or, indeed, any other translation-
invariant quantum perturbation, which could be long-range but must
decay exponentially; see (2.20). Similar results were obtained in ref. 35.
(But the authors study only the line ++=+&).

(R4.2) By considering the transformed interaction, [8 (2)
X ], we can

actually show that, for low temperatures and t�U small, a phase diagram
as in Fig. 4 appears for the Falicov�Kimball model: There are two ``strips''
of width of order t4�U 3, located around the lines ++&+&=\4t2�U for
zero temperature, and some smooth deformation [Section 3.2.1] of them
for small nonzero temperatures, where nothing can be said. Between them,
the states are Ne� el ordered, while towards the upper left the state is (a ther-
mal perturbation of the ground state) all-``+,'' and to the bottom right it
is all-``&.'' Such a phase diagram has already been established at zero tem-
perature, (20, 31) but the proof of its stability for small temperatures had to
wait until the development of the methods discussed in this paper and the
related methods of ref. 35.

(R4.3) Resorting to the next order in the transformation of interac-
tions, i.e., to [8 (4)

X ], we can see in more detail what goes on inside the two
excluded regions discussed above. For d=2, each region splits into four
``strips,'' now of width of order t6�U 5, that require further investigation
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Fig. 4. Phase diagram at zero and low temperatures of the Falicov�Kimball model to order
t2�U, as a function of h=++&+&. The labels S+, S& and Scb refer to states that are quan-
tum and thermal fluctuations of the indicated configurations or its translations (open circles
correspond to ``+'' particles and closed circles to ``&'' particles). Thick lines represent
excluded regions of width O(t4�U 3) located around h\=\4t2�U+O(=;t). The small correc-
tion =;t is discussed in Sections 4.4 and 4.5 below.

(Fig. 5), and, between them, a finite number of states appear, which are
quantum and thermal perturbations of certain configurations with different
proportions of ``+'' and ``&'' particles. At zero temperature, these features
have been formally calculated in ref. 21 and rigorously established in
refs. 31 and 23, and, by a cluster-expansion method, in ref. 38. Our for-
malism shows that they are also present at small nonzero temperature,
except that the excluded manifolds suffer a smooth (and small) deforma-
tion.

Fig. 5. Phase diagram at zero and low temperatures of the Falicov�Kimball model to order
t4�U 3, as a function of h=++&+&. Besides the states of Fig. 4, there appear those corre-
sponding to quantum and thermal fluctuations of rotations and translations of the configura-
tions Si (depicted) and S� i (obtained from the Si by a v W b interchange). The excluded
regions (thick lines) have width O(t6�U 5) and their location are determined by the values
h1=&4t2�U&4t4�U 3+O(=;t), h2=&4t2�U+16t4�U 3+O(=;t), h3=&4t2�U+48t4�U 3+
O(=;t) and h4=&4t2�U+84t4�U 3+O(=;t).
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(R4.4) At the next order, t6�U 5, each of the eight precedent strips is
expected to open up into eight finer strips outside of which there is only
a finite ground state degeneracy. Our formalism would then yield stability
of this structure when the temperature is increased or further small quan-
tum perturbations are added. In fact, a ``devil's staircase'' is expected to
appear in this way, to successively larger orders tn�U n&1.(25, 47) While we
do not work out any details we think that this paper provides enough
tools for a motivated reader to pursue these issues: It provides algorithms
for the higher-order transformed interactions [8 (n)

X ], the certainty that the
remainders are rigorously controlled to the specified order, and conditions
to predict stability. Of course, in order to get precise results, one has to
come up with an accurate determination of the ground states of the classi-
cal leading part of the transformed interactions. This tends to be the hard-
est part of the work. The beautiful method introduced in ref. 31 (see also
the application in [ref. 23, Appendix A]) could be very helpful at this
point.

An advantage of our methods is their robustness with respect to per-
turbations: All the results sketched above remain valid if we add an
arbitrary, but small enough, quantum perturbation that respects the sym-
metries connecting the different ground states (typically invariant under
translations and 90%-rotations). In particular, they extend to the Falicov�
Kimball regime (i.e., |t[ yx]

+ | small, but not necessarily zero), and to models
including additional perturbations, which can possibly be long-range but
must decay exponentially; see (2.20).

Our methods are not suited for the study of the phase diagram of the
SU(2)-symmetric Hubbard model, because continuous symmetry breaking
is accompanied by the appearance of gapless modes. In particular, we can-
not apply our phase-diagram technology to the effective Hamiltonians that
would be obtained via Gutzwiller projections (t&J interaction + higher
orders). But we emphasize that the perturbation technique (I) is applicable
in such situations.

Falicov�Kimball Model with Flux [t[ yx]
& =t exp(i%yx), with %yx #

[0, 2?)]. The previous results can be extended to the model with flux,
starting from the study of ground states presented in ref. 23. For this case,
the results (R4.1) and (R4.2) remain valid, because the properties involved
are independent of the flux. Regarding (R4.3), the positions of the excluded
regions do depend on the flux, but the ground states around them do not
(see Section 3.2.1 in ref. 23). Our methods show that these ground states
remain stable at small temperature and�or under the addition of small
translation- and rotation-invariant quantum perturbations (e.g., ionic
motion).
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Fig. 6. Lattice for the 3-band Hubbard model. The open circles denote oxygen sites while
the closed circles denote copper sites.

1.2.2. 3-Band Hubbard Model. As an illustration of the use of
our perturbation technique for models whose leading interaction is not
strictly on-site, we consider the 3-band Hubbard model, which was first
introduced by Emery to describe the behaviour of the charge carriers in the
CuO2 planes of cuprates exhibiting high-Tc superconductivity. The model
is defined on a two-dimensional lattice, a unit cell of which contains one
copper and two oxygen atoms (Fig. 6).

The copper atoms form a square lattice, and there is an oxygen atom
between each nearest neighbor copper-copper pair.

The charge carriers are spin-1�2 holes which can hop between the
d-orbital of a copper atom and the p-orbital of an adjacent oxygen atom.
We shall refer to this as the hopping of holes between a copper site and
an oxygen site. The Hamiltonian governing the model defined on a finite
lattice 4 :=A _ B, where A denotes the sublattice of copper atoms and B
denotes the sublattice of oxygen atoms, is given as follows:

H4={Ud :
x # A

nd
x+ nd

x&+Up :
y # B

n p
y+ n p

y&+Upd :
(xy)

x # A, y # B

nd
xn p

y

+=d :
x # A

nd
x+=p :

y # B

n p
y =+{tpd :

(xy)
x # A, y # B

:
_=+, &

[ p-
y_dx_+d -

x_ py_]=
:=H04+V4(tpd ) (1.2)

The number operator for a hole at the site x # A is nd
x=(nd

x++nd
x&), where

nd
x_=d -

x_ dx_ , for _ # [+, &], with d -
x_ and dx_ denoting fermion creation-

and annihilation operators for a hole of spin _ at the site x. The corre-
sponding number operator for a hole at the site y # B is n p

y =(n p
y+ +n p

y&)
where n p

y_= p-
y_ py_ , with p-

y_ and py_ the fermion creation- and annihilation
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operators for a hole of spin _ in the p-orbital of an oxygen atom. The coef-
ficients Ud and Up denote the strengths of the on-site repulsions between
two holes of opposite spin when they occupy a copper site and an oxygen
site, respectively. In addition to this on-site interaction, two holes experi-
ence a Coulomb repulsion of strength Upd when they occupy adjacent
copper and oxygen sites. The on-site energies for the copper and the
oxygen are denoted by the symbols =d and =p , respectively, and the charge
transfer gap is given by

2 :==p&=d (1.3)

The hopping amplitude of a hole between a copper site and an oxygen site
is denoted by tpd and is proportional to an overlap integral of atomic orbi-
tals. Often a small additional term representing the direct hopping of a hole
between the p-orbitals of two oxygen atoms is included in the Hamiltonian,
but we neglect it here.

Band-structure calculations of cuprates exhibiting high-Tc supercon-
ductivity show that it is not unreasonable to study this model assuming

2>0; Ud>>Up>Upd>0; Ud>>2; tpd>0 (1.4)

and considering the strong coupling regime Ud>>tpd . (For instance, in
refs. 28 and 29, the estimated values are 2=3.6 eV, Ud=10.5 eV, Up=4 eV,
Upd=1.2 eV and tpd=1.3 eV.) We observe that: (i) we can treat V4(tpd ) as
a perturbation of H04 ; (ii) since 2>0, holes prefer to reside on copper
sites rather than on oxygen sites, and (iii) since Ud is positive and large,
double occupancy of holes at a copper site is energetically unfavorable.

We restrict our attention to the situation in which the total number of
holes, Nh , in the lattice 4 is equal to the total number of copper sites |A|:

Nh=|A| (1.5)

For this choice, a ground-state configuration of H04 has a single hole at
each copper site, there being no holes at the oxygen sites. [Equivalently, we
could introduce suitable ``chemical potentials'' and work in the region of
parameter space where the ground states have this property.] The hole at
a copper site can, however, be either spin-up or spin-down. Hence, the
ground state of H04 has a 2 |A|-fold spin degeneracy.

By resorting to our perturbation expansion, we obtain an equivalent
interaction that only involves copper atoms, which includes an antiferro-
magnetic Heisenberg term. This does not settle the question of whether the
hopping term V4(tpd ) lifts the spin-degeneracy, because, as mentioned
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above, our methods to determine stable phases do not work in the situation
where a continuous symmetry [here SU(2)] can be broken spontaneously.
Nevertheless, our methods show that the transformed interaction is mathe-
matically well defined and provide error estimates which should be
valuable in future studies. The form of the transformed interaction is well
known. (Indeed, the fact that the leading terms coincide with those of the
transformed interaction for the one-band model is an argument favoring
the study of the latter rather than of the more cumbersome 3-band model).

It should be noted that the perturbative analysis of models with classi-
cal interactions that are not on-site is more difficult, technically, than the
one of models with single-site classical interactions, such as the single-band
Hubbard model. Our presentations in Sections 2 and 6 will serve to
illustrate this point.

2. THE PERTURBATION TECHNIQUE

2.1. Foreword

In quantum mechanics, Rayleigh�Schro� dinger perturbation theory can
be formulated as the perturbative construction of unitary conjugations
transforming a Hamiltonian of the form H=H0+tV into a new
Hamiltonian, H$=H$0(t)+V$(t), with the property that H$0(t) is block-
diagonal (in the eigenbasis of H0), and V$(t) is a perturbation of order
tn+1. The operators H$0(t) and V$(t) are given in terms of power series, and
it is important to analyze the convergence properties of these series. Kato's
analytic perturbation theory(30, 42) offers criteria that guarantee conver-
gence: Suppose we attempt to block-diagonalize the Hamiltonian H with
respect to a spectral projection of H0 corresponding to a bounded subset
of the spectrum of H0 separated from its complement by an energy gap
$>0. Let us assume that the perturbation V is relatively bounded with
respect to H0 , e.g., in the sense that there exist finite (non-negative) con-
stants a and b such that

&V�&�a &H0 �&+b &�& (2.1)

for all vectors � in the domain of H0 . Then perturbation theory for the
block-diagonalization of H with respect to the given spectral projection
converges, provided

|t| a<1,
|t|
$

(a+b)<C (2.2)

where C is a constant that depends on the choice of the spectral projection.
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Unfortunately, this result cannot be applied directly to the study of
systems of quantum statistical mechanics. The reasons are as follows.

(SM1) First, we do not just want to block-diagonalize a single
Hamiltonian H but a family of Hamiltonians [H4] indexed by an increas-
ing sequence of finite regions 4 of an infinite lattice. In this setting, Kato
theory is not applicable, because the norms &H04 & and &V4 & are typically
proportional to the volume |4|, and this usually implies that the constant
b in (2.1) is proportional to the volume |4|, too. As a consequence, the
radius of convergence of plain Rayleigh�Schro� dinger perturbation series
tends to zero, as |4| tends to �. This makes it impossible to establish facts
valid in the thermodynamic limit by straightforward use of Rayleigh�
Schro� dinger�Kato analytic perturbation theory. (Even if H04 has a finite
ground state degeneracy, uniformly in 4, a naive application of Kato
theory does not prove that the perturbation series for the perturbed ground
state energy density, for example, converges uniformly in 4.)

(SM2) Second, to study the phase diagram of the system, the trans-
formed Hamiltonians H$(t) must be expressed again in terms of local inter-
actions. That is, the unitary conjugations must lead to a block-diagonaliza-
tion at the level of local interactions, rather than just at the level of
Hamiltonians. To satisfy this requirement, we find that these conjugations
must themselves be defined by (exponentials of ) sums of local operators.
Furthermore, the original interaction and the local operators defining the
conjugation must decrease exponentially in the size of the lattice region in
which they are localized.

Keeping in mind these requirements, it is natural to search for trans-
formations whose generators S are sums of local terms, S=� SY , where
each SY is localized in the region Y, in the sense that it commutes with
local operators 8X , provided X and Y are disjoint. To achieve this, we
incorporate two crucial ingredients in our expansion:

(I1) Defining local ground states (of the leading part H04), we
decompose each term 8X according to how it acts on states that are local
ground states only in the vicinity of X. This is achieved by introducing
suitable local projectors (P0

Y , P1
Y and P2

Y below).

(I2) We introduce protection zones to decouple sufficiently far sepa-
rated excitations. If we normalize the H0 -energy of local ground states to
be 0 then the H0 -energy of a configuration of local excitations (local devia-
tions from ground states) separated by protection zones is additive in the
H0 -energies of the excitations.
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Ingredient (I2) is irrelevant for the discussion of models, such as the
one-band Hubbard model, where the leading interaction is on-site. In such
models, the H0 -energy of excitations localized at different sites is additive.
But this is untypical, and in the study of more general models (I2) plays an
important role. Regarding ingredient (I1), one finds that it has been used by
some authors, (9, 19, 37, 14) but it has been ignored by others.(8, 33, 45, 10, 46) The
latter use ``global'' projections involving all sites in a given region 4, which
lead to volume-dependent expansions with a shrinking convergence radius
as mentioned in (SM1). Nevertheless, they appear to obtain correct pertur-
bative results for certain infinite-volume expectation values and for (inten-
sive) thermodynamic quantities, like ground-state energy densities. The
problem with their methods is that they do not offer a handle to proving
(rigorously) that, indeed, their predictions are correct or to determine
whether the corresponding series are convergent rather than just asymptotic.
Expansion schemes such as ours, yielding volume-independent effective
interactions, are suitable to answer such mathematical questions. To
accomplish this, they must, however, be supplemented with an appropriate
construction of ground- and Gibbs states for the transformed Hamiltonian.
This is not an easy matter, in general, and it is here that quantum Pirogov�
Sinai theory will enter the scene.

We are able to provide a complete picture of the models analyzed in
Section 5, below, where Gibbs states are constructed through quantum
Pirogov�Sinai theory. In regions of stable phases, the cluster expansion
methods we use imply the analyticity of expectations and of thermo-
dynamic potentials as functions of the couplings. For those models, there-
fore, we are able to prove that the series obtained for expectations of local
observables and for intensive quantities are well defined and convergent.

2.2. Notation, Definitions and Preliminary Results

In this section, we review the different elements of our general pertur-
bation technique. (For further details see ref. 12.)

2.2.1. Bases and Operators

The Hilbert Space. We consider a quantum-mechanical system asso-
ciated with a finite subset 4 of a &-dimensional lattice Z&. To each site x
in the lattice is associated a Hilbert space Hx . We require that there be a
Hilbert space isomorphism .x : Hx � H, for all x # Z&, H being a fixed,
finite-dimensional Hilbert space. The Hilbert space of the region 4 is given
by the ordered tensor product space

H4= }
x # 4

Hx (2.3)
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Fig. 7. Spiral order in Z2.

To avoid ambiguities in the definition of the tensor product (2.3), we
choose a total ordering (denoted by the symbol P ) of the sites in Z&. For
convenience we choose an order with the property that, for any finite
set X, the set X� :=[z # Z&, zPX ] of lattice sites which are smaller than X,
or belong to X, is finite. For example, for &=2 we can use the spiral order
depicted in Fig. 7.

Tensor Product Basis of H4 . Let I be an index set and let [ej ]j # I

be an orthonormal basis of H. Then [ex
j ]j # I , where ex

j =.&1
x ej , is an

orthonormal basis of Hx .
A configuration | on 4 is an assignment [ jx(|)]x # 4 of an element

jx # I to each x # 4. For X/4, let |X denote the restriction of the con-
figuration | to the subset X. The set of all configurations in 4 is denoted
by

C4 :=[| | jx(|) # I, x # 4] (2.4)

There is a one-to-one correspondence between configurations | in 4 and
basis vectors

e(|) := }
x # 4

ex
jx(|) (2.5)

of H4 . A tensor product basis of H4 is given by [e(|)]| # C4
.

Local Algebras of Gauge-Invariant Operators. Let B(H4) be the
algebra of all bounded operators on H4 . Let [U(%) | % # R] be a one-
parameter unitary group on H4 (gauge group of the first kind) with the
property that the vectors e(|) defined in (2.5) are eigenvectors of U(%), for
all %. For any X�4, we define a local algebra AX/B(H4) of gauge-
invariant operators with the following properties:
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v If [e(|)]| # C4
is an arbitrary tensor product basis of H4 then

(e(|$), ae(|)) =0 (2.6)

unless |$|4"X=||4"X , for all operators a # AX . (Here (�, .) denotes the
scalar product of two vectors � and . in H4 .)

v U(%) aU(%)*=a, for all a # AX , for arbitrary X/4; (gauge-
invariance).

v If X/Y then AX/AY .

v If X & Y=< then

[a, b]=0 (2.7)

for any a # AX and any b # AY .

Example. Gauge-invariant polynomials in fermion creation- and
annihilation operators. Let

[cx_ , c-
x_$ | x # 4, _=+, &] (2.8)

denote the usual fermion creation- and annihilation operators satisfying the
canonical anti-commutation relations

[cx_ , cy_$]=[c-
x_ , c-

y_$]=0 (2.9)

and

[cx_ , c-
y_$]=$xy $__$ (2.10)

Of course, _ is the spin index. We define

U(%)=exp(i%N ), where N= :
x # 4

_ # [+, &]

c-
x_cx_ (2.11)

The local algebras AX , X�4, are defined by

AX=[a | a is an arbitrary polynomial in cx_ , c-
x_ , x # X, _ # [+, &]

with the property that U(%) aU(%)*=a] (2.12)

The Algebra of Local, Gauge-Invariant Operators. Since AX/AY ,
for X/Y, we may consider the (inductive) limit �XZZ & AX . The algebra A

is defined to be the closure of �XZZ & AX in the operator norm and is called
the algebra of all local, gauge-invariant operators.
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2.2.2. Interactions and Ground States

Classical Operators and Interactions. An operator a is ``classical''
w.r.t. a given tensor product basis [e(|)] if and only if e(|) is an eigen-
vector of a, for all | # C4 . An interaction [80X ] is said to be a ``classical
interaction'' (w.r.t. [e(|)]| # C4

) if and only if the following conditions
hold:

1. 80X # AX is a classical operator w.r.t [e(|)], for all X�4.

2. More precisely,

80X e(|)=80X (|) e(|), 80X (|) # R (2.13)

where 80X (|) only depends on ||X .

[Note that 2 follows from 1 and from (2.7)].

m-Potentials. Let 80=[80X ] be a classical interaction. We shall
always assume that there is at least one configuration, |0 , minimizing all
80X , i.e.,

80X (|0)=min
|

80X (|) (2.14)

for all X; (this assumption holds if 8 is given in terms of a so-called
m-potential(27)). We normalize the operators 80X such that 80X (|0)=0,
for all X. Thus

80X (|)�0 and min
|

80X (|)=0 (2.15)

for all X.

Local Ground States. A configuration | is said to be a local ground-
state configuration for a classical interaction 80 and a subset X of the
lattice if

80Y (|)=0 for all Y�X (2.16)

The local Hamiltonians H0X=�Y�X 80Y thus have the property that

H0Xe(|)=0 (2.17)

whenever | is a local ground state configuration for X. A state e is said to
be a local ground state for a region X if e is an arbitrary linear combination
of the vectors e(|), where | ranges over the local ground state configura-
tions for X.
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We shall always assume that the spectrum of H0X has a gap above 0
which is bounded from below by a positive X-independent constant, for all
bounded sets X. This assumption can be derived from suitable assumptions
on the classical interaction 80 (80 should be an m-potential with a finite
number of periodic ground states, see ref. 27).

The Full Interaction. We consider quantum lattice systems whose
dynamics is encoded in an interaction 8 which is assumed to be of the
form

8=80+Q(*) (2.18)

where 80=[80X ] is a finite-range classical interaction given in terms of an
m-potential, and Q(*)=[QX (*)] is a perturbation interaction with *=
[*1 ,..., *k] a family of real or complex perturbation parameters. For
brevity, we shall say that a set X is a classical bond if 80X{0, and a quan-
tum bond if QX (*){0. The operators 80X and QX (*) belong to the local
algebra AX . A polynomial p(*) is said to be of degree n if

p(*)=: cn1 } } } nk
*n1

1 } } } *nk
k (2.19)

with n=max[�k
j=1 n j : cn1 } } } nk

{0]. We assume that the leading order in *
of the Interaction Q(*) in (2.18) is of degree 1 (i.e., linear in *).

We also assume that the interaction Q(*)=[QX (*)] is either of finite
range or decays exponentially in the size of its support, i.e., that there exist
an r>0 such that

:
X % 0

- tr[Q*X (*) QX (*)] ers(X )<� (2.20)

where s(X ) denotes the cardinality of the smallest connected subset of the
lattice which contains X. The interaction Q(*) will be treated as a perturba-
tion.

Remark. Roughly speaking, we shall always split the Hamiltonian
H4 into a sum of an unperturbed operator H04 and a perturbation V4(*)
in such a way that all low-lying eigenstates of H4 , corresponding to eigen-
values separated from the rest of the spectrum of H4 by a positive (4-inde-
pendent) gap, correspond to degenerate ground states of H04 . More
precisely, we choose the classical interaction 80 in such a way that all local
low-energy eigenstates of the local Hamiltonians H0X , for X/4 are exactly
degenerate in energy; small degeneracy-lifting terms are systematically put
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into the interaction Q(*) defining the perturbation V4(*). In a general
exposition of our methods, this is a very convenient way of ensuring that
H0 -energies of sufficiently far separated local excitations are additive. (Of
course, in a concrete model, additivity of H0 -energies of local excitations
may hold for independent reasons; see e.g., Section 3.)

2.2.3. Projection Operators. Protection Zones

``Diagonal'' and ``Off-Diagonal'' Operators. Given a partition of
unity

1= :
N

j=1

Pj , PiPj=$ijPj , Pi*=P i (2.21)

and an operator Q, we set

Qij=PiQPj (2.22)

We will call the operators Qii ``diagonal,'' and the operators Qij, i{ j, ``off-
diagonal'' (with respect to the given partition of unity).

Protection Zones. To deal properly with the local nature of different
operators we define, for any x # Z&, a so-called R-plaquette centered at x:

Wx :=[ y # Z&: | y i&xi |�R, for 1�i�&] (2.23)

where R is the range of the interaction 80 . For any finite set X/Z&, its
covering by R-plaquettes is denoted by

BX := .
x # X

Wx (2.24)

The set BX"X can be interpreted as a protection zone around X.

Local Projections. We introduce some special projection operators
on the Hilbert space H4 :

1. If Y/4 then P0
Y is the orthogonal projection onto local ground

states for Y. If Z�Y then P0
Z$P0

Y .

2. The orthogonal projection onto the space of states which are
ground states on BX "X, but fail to be ground states on X:

P1
BX

:=P0
BX"X&P0

BX
(2.25)
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Hence P1
BX

projects onto the space of states which have an excitation
localized in X. The set BX"X acts as a ``protection zone'' introduced to
ensure the additivity of energies of disconnected excitations [see (2.30)
below].

3. The projection onto states with excitations in the ``protection
zone'' BX "X:

P2
BX

:=1&P0
BX"X (2.26)

where 1 is the identity operator.

Additivity of Excitation Energies. For each finite X/Z&, we can
decompose the Hamiltonian H04 as follows:

H04=H� 0X+H� 0Bc
X
+H0BX"X (2.27)

where Bc
X=4"BX ,

H0A= :
Y/A

80Y (2.28)

and

H� 0A= :
Y & A{<

80Y (2.29)

If � # Ran P0
BX "X then

H04 �=(H� 0X+H0BX "X+H� 0B c
X
) �

=(H� 0X+H� 0Bc
X
) � (2.30)

This follows, because H0BX"X�=H0BX"XP0
BX "X�=0. Hence, on states �

corresponding to ground-state configurations in the region BX "X, energies
are additive.

2.2.4. Operator Identities

The Lie-Schwinger Series. With this expression we shall refer to the
following expansion:

eABe&A=B+[A, B]+
1
2!

[A, [A, B]]+ } } }

= :
�

n=0

1
n!

adn A(B) (2.31)
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Here we use the notation

ad A(B)=[A, B];

ad2 A(B)=[A, [A, B]]; (2.32)

adn A(B)=[A, adn&1(B)]

and the convention

ad0 A(B)=B (2.33)

The ``ad&1'' Operation. Given a self-adjoint operator H whose spec-
trum consists only of eigenvalues Ei , i=1, 2,..., and an operator Q which
is purely ``off-diagonal'' with respect to the partition of unity given by the
projections Pi onto the eigenspaces corresponding to each Ei , we define

ad&1 H(Q)=:
ij

Pi Q
Ei&Ej

P j (2.34)

The right hand side is well defined, because Q is an off-diagonal operator.
Of course, ad&1 is the operation inverse to ad, i.e.,

[H, ad&1 H(Q)]=Q (2.35)

2.3. First-Order Perturbation Theory

The first step in our perturbation technique consists in eliminating
``off-diagonal'' operators of lowest order in *. Here ``off-diagonal'' refers to
the partitions of unity

1=P0
BX

+P1
BX

+P2
BX

(2.36)

In the following, we usually suppress the explicit dependence of the
operators QX (*) on *. We rewrite QX#QX (*) as

QX=Q00
BX

+Q01
BX

+QR
BX

(2.37)

where Q00
BX

is a ``diagonal'' operator defined by

Q00
BX

:=P0
BX

QXP0
BX

(2.38)
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Q01
BX

is an ``off-diagonal'' operator given by

Q01
BX

:=P0
BX

QXP1
BX

+P1
BX

QXP0
BX

(2.39)

and QR
BX

is the remainder

QR
BX

:=P2
BX

QX P2
BX

+P1
BX

QX P1
BX

(2.40)

Note that, since QX # AX , the operators P i
BX

QX P2
BX

and P2
BX

QXP i
BX

vanish,
for i=0, 1.

Using the decomposition (2.37) we can write the Hamiltonian H4 as
follows:

H4=H04+V 00
4 +V 01

4 +V R
4 (2.41)

where V 00
4 =�X/4 Q00

BX
, V 01

4 =�X/4 Q01
BX

, and V R
4=�X/4 QR

BX
.

There is a slight subtlety, at this point, related to boundary conditions:
The definition of the operators P i

BX
, i=0, 1, 2, and of Q00

BX
, Q01

BX
, QR

BX
for

regions X with the property that BX & 4c is non-empty must, in general, be
modified in such a way that the boundary conditions imposed on the con-
figurations on 4c are properly taken into account. We shall not enter into
a detailed discussion of this (primarily technical and usually straightfor-
ward) issue. In fact, we shall usually think of periodic boundary conditions
for which the issue does not arise.

For notational simplicity we henceforth suppress the subscript 4.
Following the guidelines explained in the Introduction, we search to elimi-
nate the first-order off-diagonal terms Q01

BX
, through a unitary transforma-

tion U (1)(*)=exp(S1(*)), where S1(*) is of degree 1 and is given by a sum
of local operators:

S1(*) :=:
X

S1BX
(*) (2.42)

In the sequel we shall also suppress the explicit *-dependence of the
operators S1(*) and S1BX

(*). In order to gain mathematical control of the
resulting expressions, it is essential(12) that each S1BX

be a local operator.
By the Lie�Schwinger series (2.31), the unitary operator U (1) yields

the transformed Hamiltonian

H (1) :=eS1He&S1

=H0+V 00+V 01+V R

+ :
n�1

1
n!

adn S1(H0+V 00+V 01+V R) (2.43)
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To leading order, the operators S1 , V 00, V 01 and V R depend linearly on
the perturbation parameter *. We wish to eliminate V 01. This leads to the
condition

ad H0(S1)=V 01 (2.44)

If this equation is satisfied, the Hamiltonian (2.43) becomes��singling out
the terms up to second order in *��

H (1)=H0+V 00+V R+V2+ :
n�2

1
n!

adn S1 \V 00+V R+
n

n+1
V 01+

(2.45)

with

V2 :=ad S1 \V 00+V R+
V 01

2 + (2.46)

Condition (2.44) reads

:
X

ad H0(S1BX
)=:

X

Q01
BX

(2.47)

which, given (2.35), suggests the choice S1BX
=ad&1 H0(Q01

BX
). The locality

of the operator S1BX
follows from (2.30), which implies that

ad&1 H0(Q01
BX

)=ad&1 H� 0X (Q01
BX

) (2.48)

This is because the operator Q01
BX

vanishes on all states which are not local
ground states for H0BX"X (see (2.6) and (2.17)), whereas H� 0B c

X
measures the

energy of the configuration outside X; see definition (2.29). Hence, (2.47) is
satisfied if we choose

S1BX
=ad&1 H� 0X (Q01

BX
) (2.49)

Selfadjointness of H� 0X and Q01
BX

implies anti-selfadjointness of S1BX
and

hence of S1 . The identities (2.42) and (2.49) show that S1 is given by a sum
of local operators. The condition that S1BX

should be a local operator (i.e.,
S1BX

# ABX
) motivates our introduction of the ``protection zone'' BX "X. In

ref. 12 it is shown that the family [S1BX
] satisfies the required summability

condition if the initial interaction [QX ] does.
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More precisely, if Pi denotes the projection onto the eigenspace of H� 0X

corresponding to an eigenvalue Ei , E0=0<E1<E2< } } } , then from
(2.34)

S1BX
=:

ij

Pi
Q01

BX

Ei&Ej
P j (2.50)

For Q01
BX

as in (2.39), i{ j (and either i=0, or j=0); thus Ei&Ej{0.
Hence S1BX

is a well defined operator. Let us point out that, with these
definitions,

V2= :
X1 , X2

BX1
& X2{<

ad S1BX1 \Q00
BX2

+QR
BX2

+
Q01

BX2

2 +

=: :
X1 , X2

BX1
& X2{<

V2BX1 _ X2
(2.51)

The transformed Hamiltonian (2.43) can be written in the form

H (1)=K (1)+R(1) (2.52)

where the operator K (1) contains the leading-order block-diagonal con-
tributions:

K (1)=H0+V 00+V R+V 00
2 +V R

2 (2.53)

where the last two terms are sums of operators

V 00
2BX1 _ X2

:=P0
BX1 _ X2

V2BX1 _ X2
P0

BX1 _ X2
(2.54)

V R
2BX1 _ X2

:=P1
BX1 _ X2

V2BX1 _ X2
P1

BX1 _ X2
+P2

BX1 _ X2
V2BX1 _ X2

P2
BX1 _ X2

(2.55)

This leading part K (1) basically corresponds to the first-order expressions
usually presented in the literature on perturbation expansions. The
``remainder'' R(1), on the other hand, starts with the leading ``non-diagonal''
terms and includes all higher-order contributions arising from the Lie�
Schwinger series (2.43)

R(1)=V 01
2 + :

n�2

:
X0 , X1 ,..., Xn:

X0 _ } } } _ Xn#c.s.

1
n!

_ad S1BXn \ad S1BXn&1 \ } } } \Q00
BX0

+QR
BX0

+
n

n+1
Q01

BX0+ } } } ++ (2.56)
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where X0 _ } } } _ Xn#c.s. denotes the condition

Xi & BYi&1
{< for 1�i�n (2.57)

with Yi&1=X0 _ } } } _ Xi&1 , and

V 01
2BX1 _ X2

:=P0
BX1 _ X2

V2BX1 _ X2
P1

BX1 _ X2
+P1

BX1 _ X2
V2BX1 _ X2

P0
BX1 _ X2

(2.58)

As shown in ref. 12, the series (2.56) converges, in fact absolutely and
exponentially fast, if the original interaction Q satisfies (2.20).

In fact, the transformed Hamiltonian H (1) comes from an interaction

8(1)=9 (1)
0 +Q� (1) (2.59)

where 9 (1)
0 and Q� (1) are the interactions whose terms yield K (1) and R(1)

respectively. Explicitly, 9 (1)
0 =[9 (1)

0BY
] where the 90BY

are nonzero only for
Y=X or Y=X1 _ X2 with BX1

& X2{< and X, X1 , X2 (original) bonds
and take the values

9 (1)
0BX

=P0
BX

80XP0
BX

+P1
BX

80XP1
BX

+Q00
BX

+QR
BX

+V 00
2BX

+V R
2BX

(2.60)

9 (1)
0BX1 _ X2

=V 00
2BX1 _ X2

+V R
2BX1 _ X2

(2.61)

All the operators involved are ``diagonal'' with respect to the partition of
unity (2.36) or the analogous partition with X replaced by X1 _ X2 . The
interaction Q� (1) has only terms of the form [Q� (1)

BY
], where Y is a ``c.s.''-con-

nected set of quantum bonds:

Y= .
n

j=0

Xj#c.s., n�1 (2.62)

and

V 01
2BX0 _ X1

n=1

Q� (1)
BY

={ 1
n!

ad S1BXn \ad S1BXn&1 \ } } } \Q00
BX0

+QR
BX0

+
n

n+1
Q01

BX0+ } } } ++
n�2 (2.63)

The analysis of ref. 12 shows that the operators Q� (1)
Z , which make up

the remainder R(1), decay exponentially in the size of their supports. More
precisely, there exists a positive constant r1>0 such that

:
Z % 0

- tr[Q� (1)
Z *(*) Q� (1)

Z (*)] er1s(Z)=O(*2) (2.64)
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where s(Z) denotes the cardinality of the smallest connected subset of the
lattice containing Z. Furthermore, the part of (2.64) involving ``00''-com-
ponents is of order 3 or larger in *. It is, therefore, natural to expect that
this interaction [Q� (1)

BY
] does not contribute to the ground-state energy of

the transformed Hamiltonian H (1), to second order in the perturbation
parameter *. This fact is easy to see in finite volume, but, as mentioned
before, its verification in the thermodynamic limit��at the level of energy
densities��requires a suitable construction of (infinite-volume) ground
states. For this reason we shall be able to confirm this expectation only in
those cases were the transformed interaction satisfies the hypotheses of the
quantum Pirogov�Sinai theory of Section 4.2. (This excludes models with
a continuous symmetry.)

These remarks motivate the customary decomposition of 9 (1)
0 into the

``00'' or ``low energy'' sector and the rest:

9 (1)
0BY

=[9 (1)
0BY

]00+0 (1)
BY

:=8 (1)
0BY

+0 (1)
BY

(2.65)

It is worth noting that the interaction 8 (1)
0 is of finite range. The methods

discussed in Section 4 for the study of the phase diagram rely on the choice
of a suitable tensor product basis [e(|)] such that the operators 8 (1)

0BY
can

be further decomposed into a part that is exactly diagonal in the tensor
product basis [e(|)]��i.e., is ``classical '' with respect to [e(|)]��and a
small perturbation. The optimal choice of [e(|)] is the one that renders
this perturbation as small as possible.

With (2.65) we obtain

8(1)=8 (1)
0 +Q(1) (2.66)

where 8 (1)
0 =[8 (1)

0BY
] and Q (1)=[Q� (1)

BY
+0 (1)

BY
]. Usually, in the physics liter-

ature, only the leading part 8 (1)
0 is reported, expecting that it is responsible

for the decisive contribution to the ground state energy of the transformed
interaction 8(1), to second order in the perturbation parameter *. One
expects to gain heuristic insight into the structure of ground- and low-tem-
perature states of 8 from the ground states of 8 (1)

0 . For example, large
degeneracies in the spectrum of the Hamiltonian determined by 80 may
turn out to be lifted in the spectrum of the one determined by 8(1)

0 . In par-
ticular, the classical part of this last interaction ought to lead to a more
accurate insight into low-temperature properties of the system than the
original 80 . The examples below illustrate instances where these expecta-
tions can be rigorously confirmed.
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2.4. Second-Order Perturbation Theory

Next, we search for a unitary transformation which removes the off-
diagonal part of the original perturbation, [Q01

BY
], to order |*|2. A possible

approach (certainly not the only one, see the discussion in Section 2.5
below), is to transform the interaction 8(1) so as to eliminate the lowest
order off-diagonal part of the perturbation Q(1). This leads one to consider
a unitary transformation of the form

U (2)(*)=eS2 (*)eS1(*) (2.67)

where S1#S1(*)=�X/4 S1BX
is defined by (2.49), while S2(*) is deter-

mined from the above requirement. The generator S2(*) must have leading
terms of degree 2 and is required to be a sum of local operators:

S2#S2(*)= :
Y/4

S2BY
(*) (2.68)

We notice that the choice (2.67) does not amount to an iteration of the
first-order procedure, because we keep using the partitions of unity deter-
mined by the spectral projections of the original classical part 80 , rather than
those corresponding to the transformed 8 (1)

0 . We comment in Section 2.5,
below, how an iterated method (Method 3) would proceed.

To alleviate the forthcoming formulas let us suppress the explicit
*-dependence of the operators S1(*) and S2(*). The unitary transformation
yields the Hamiltonian

H (2) :=eS2eS1He&S1e&S2

=eS2H (1)e&S2 (2.69)

where H (1) is the Hamiltonian given by (2.45). Applying the Lie�Schwinger
series we see that the term V 01

2 can be removed by defining

S2 :=ad&1 H0(V 01
2 )

= :
X1 , X2

X1 & BX2
{<

ad&1 H� 0X1 _ X2
(V 01

2BX1 _ X2
)

:= :
X1 , X2

X1 & BX2
{<

S2BX1 _ X2
(2.70)
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With this choice, we obtain��singling out the terms of up to fourth order
in *��

H (2)=H0+V 00+V R+V 00
2 +V R

2 +V3+V4+T (2.71)

where

V3=ad2 S1 \V 00

2
+

V R

2
+

2V 01

3! ++ad S2 \V 00
2 +V R

2 +
V 01

2

2 + (2.72)

V4=ad3 S1 \V 00

3!
+

V R

3!
+

3V 01

4! + (2.73)

and T consists of all terms of order n with n�5.
The transformed Hamiltonian H (2) can be written as

H (2)=K (2)+R(2) (2.74)

where

K (2)=K (1)+V 00
3 +V R

3 +V 00
4 +V R

4 (2.75)

is given entirely in terms of an interaction 9 (2)
0 #[9 (2)

0BY
], with the prop-

erty that the operators 9 (2)
0BY

are ``diagonal'' with respect to the partitions
of unity

1=P0
BY

+P1
BY

+P2
BY

(2.76)

and are of order k in *, with 0�k�4. All terms which are ``off-
diagonal''��starting with V 01

3 +V 01
4 ��, and all ``diagonal'' terms of higher

orders, are included in the remainder R(2), which is given in terms of an
interaction Q� (2)=[Q� (2)

BY
]. The analysis of ref. 12 shows that these operators

satisfy

:
Z % 0

- tr[Q� (2)
Z *(*) Q� (2)

Z (*)] er2s(Z)=O(*3) (2.77)

for some r2>0, and that a similar sum involving ``00''-components is of
order 5 or larger in *.

Further, as in (2.65), we can write

9 (2)
0 =8 (2)

0 +0 (2)
0 (2.78)
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where 8 (2)
0 #[8 (2)

0BY
] is a finite range interaction with the property that

[8 (2)
0 ]ij=0, for ij{00. One expects this part to determine the ground-state

energy to order 4 in *.

2.5. Synopsis of Perturbation Theory

The above procedure can be iterated to any finite order in *. To n th
order, we aim at constructing a unitary operator, U (n)

4 (*), such that

H (n)
4 (*)=U (n)

4 (*) H4(*) U (n)
4 (*)* (2.79)

has the property that

H (n)
4 (*)= :

Z/4

8 (n)
Z (*) (2.80)

with

P0
BZ

8 (n)
Z (*) P1

BZ
+P1

BZ
8 (n)

Z (*) P0
BZ

=O( |*|n+1) (2.81)

for all Z. We need to ensure that the conjugation of an interaction with
exponential decay by the operator U (n)

4 (*) is again an interaction with
exponential decay. In ref. 12 we present two possible structures for an
operator U (n)

4 (*) compatible with this requirement (we drop the subscript 4):

Method 1:

U (n)
4 (*)=eS n

(1)(*) } } } eS1
(1)

(*) (2.82)

Method 2:

U (n)
4 (*)=exp \ :

n

j=1

S (2)
j (*)+ (2.83)

In both cases,

S (:)
j (*)=:

Z

S (:)
jZ (*), :=1 or 2 (2.84)

where the local operators S (:)
jZ (*) are of degree j in *. The idea is to deter-

mine these operators recursively in such a way that the condition (2.81)
holds, for n=1, 2, 3,.... Given S (:)

1Y ,..., S (:)
kY , for arbitrary Y, (2.81) uniquely

fixes the ``off-diagonal'' contribution to S (:)
k+1Z , for any Z and for any k<n.
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Explicit formulas may be found in ref. 12. The method described in Sec-
tion 2.4 follows method 1.

There is a third way of organizing the recursive perturbative construc-
tion of unitary operators U (n)(*) approximately block-diagonalizing the
Hamiltonian H, inspired by Newton's method and similar, in spirit, to the
renormalization group strategy. Recall that first order perturbation theory
[see (2.66) in Section 2.3] yields a unitary operator U (1)(*) such that

U (1)(*) HU (1)(*)*=: H (1)=H (1)
0 +V (1) (2.85)

where H (1)
0 =�Y 8 (1)

0BY
, 8 (1)

0 =[8 (1)
0BX

] is a block-diagonal interaction, and
the interaction giving rise to V (1) :=�Y Q (1)

BY
has ``off-diagonal'' terms of

order 2 in *. The third method to construct the conjugations is based on
keeping track of the low-energy spectrum of the Hamiltonians determined
by [8(1)

0BY
] (rather than by [80BY

]), and, in particular, of their ground
states. This gives rise to a partition of unity

1= (1)P0
BX

+ (1)P1
BX

+ (1)P2
BX

(2.86)

which serves to decompose the operators Q (1)
X into

Q (1)
X =[Q (1)

X ]00+[Q (1)
X ]01+[Q (1)

X ]R (2.87)

as in (2.37), and hence

H (1)=H (1)
0 +[V (1)]00+[V (1)]01+[V (1)]R (2.88)

in analogy to (2.41). We now proceed as in (2.42) through (2.50) of
Section 2.3. This yields an operator

S (3)
2 (*)=:

X

S (3)
2BX

(*) (2.89)

such that

H (2)=eS 2
(3)

H (1)e&S2
(3)

(2.90)

has the form

H (2)=H (2)
0 +V (2) (2.91)

where the perturbation V (2) does not have any ``off-diagonal'' terms of
order �2, with respect to the partition of unity (2.86). We may now
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proceed recursively, in the same manner, eliminate off-diagonal terms to
ever higher order in *.

The analysis of ref. 12 remains valid for this case too, and provides
proofs of convergence and summability of the different interactions.

3. PERTURBATION EXPANSION FOR THE ONE-BAND
HUBBARD MODEL NEAR HALF-FILLING

3.1. Preliminary Remarks

In this section we derive the effective Hamiltonians for the one-band
Hubbard model, defined by the Hamiltonian (1.1), near half-filling by
applying the perturbative unitary conjugation, Method 1, described in
Section 2.5. This model has a number of simplifying features that makes it
ideal for a non-trivial exemplary application of our methods. The simplifi-
cations stem from the fact that its leading classical interaction [formula
(3.3) below] is a sum of on-site terms. First, this implies that every eigen-
value of H0X , X/4 [defined as in (2.28)], is a sum of on-site energies
=x(s) [where s denotes the on-site configuration and x # 4] which for this
model are

=x( A )=&++ , =x( a )=&+& , =x(<)=0, =x( A , a )=U&++&+&

(3.1)

Hence its zero-temperature phase diagram is easy to determine (Fig. 1).
Second, the classical interaction has range R=0, and there is no need

for protection zones:

BY=Y (3.2)

for arbitrary Y/4.
Below we shall consider, for the whole shaded region of Fig. 2, projec-

tions onto the entire band of single-occupancy states. These states are all
simultaneously (local) ground states of the classical interaction along the
line ++=+& (in the complement of this line this degeneracy tends to be
lifted).

We present the block-diagonalization of the Hubbard Hamiltonian
only to second (Section 3.4) and third order (Section 3.5) in the hopping
amplitudes. But we believe that the following discussion, together with
Section 4 of ref. 12, provide enough details for a motivated reader to pursue
the procedure to an arbitrary order.
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3.2. The Original Interaction

As mentioned in the Introduction, it is necessary to implement our
perturbation scheme at the level of interactions instead of Hamiltonians.
The dominant term, H04 , of the Hamiltonian (1.1) can be expressed in
terms of an on-site interaction 80=[80x] where

80x=Unx+ nx&&
h
2

(nx+ &nx& )&
k
2

(nx+ +nx& ) (3.3)

with x # 4 and

h :=++&+& , k :=++++& (3.4)

As in (2.28), this interaction defines local Hamiltonians

H0Y= :
x # Y

80x (3.5)

The quantum perturbation is the kinetic-energy term, and the perturbation
parameters are the hopping amplitudes t

�
=[tb

+ , tb
& , tb�

+ , tb�
&], where

b=[xy] denotes an ordered pair of nearest neighbor sites and b� is the
same nearest neighbor pair, but with reverse ordering. The perturbation is
assumed to be translation invariant, that is t\b only depends on the direc-
tion, y&x, of b. We shall write

t=max[tb
+ , tb

& , tb�
+ , tb�

&] (3.6)

We write the quantum interaction as

QX#QX (t
�
)=Q[xy](t

�
)+Q[ yx](t) (3.7)

where X denotes the unordered pair (xy) and

Qb#Qb(t
�
)= :

_=\

Q_b(t
�
) (3.8)

with

Q_b#Q_b(t
�
) :=tb

_c-
x_cy_ (3.9)

Moreover, if the Hamiltonian is assumed to be self-adjoint then

tb
\=(tb�

\)* (3.10)
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3.3. The local projections

We start by introducing partitions of unity giving rise to appropriate
decompositions of the hopping terms in the Hubbard Hamiltonian into
``diagonal'' and ``off-diagonal'' operators. The most interesting part of the
shaded region of Fig. 2 is the vicinity of the line of infinite degeneracy. On
this line, the ground states of 80 are (linear combinations of ) configura-
tions with precisely one (up-spin or down-spin) electron occupying each
site. For Y/4, the orthogonal projections onto the subspace spanned by
the ground states of H0Y are of the form

P0
Y := `

x # Y

P0
x (3.11)

with

P0
x :=(nx+&nx&)2 (3.12)

As remarked above, as the classical interaction (3.3) is on-site, i.e., of
zero range, there is no need for protection zones. This implies, first, that we
can define the projection P1

0Y by setting

1=P0
Y+P1

Y (3.13)

and, second, that we can use these projections P0
Y and P1

Y throughout the
whole shaded region of Fig. 2. The operators P0

Y are projections onto states
with single occupancy. This family of states included therefore, ground
states and low-lying excitations. The operators P1

Y , on the other hand,
project onto the complementary subspace corresponding to of high-energy
excitations, formed by states with at least one site in Y occupied by zero
or two electrons.

3.4. First-Order Perturbation Theory

Let us perform the first step of the perturbative analysis of Section 2,
namely the block-diagonalization of the interaction to second order in the
perturbation parameters. In this section, X is always used to denote a pair
of nearest neighbor sites.

We consider the perturbation defined in (3.7)�(3.9) and decompose it
into the form (2.37), QX=Q00

X +Q01
X +QR

X , using the projections P0
X and

P1
X defined in (3.11)�(3.12) (P2

Y=0 for all Y/4). It is simple to check that

Q00
X =0 (3.14)
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Our goal is to construct a unitary transformation,

U (1)(t)=eS1(t) (3.15)

with the property that H (1)
4 (t) :=U (1)(t) H4U (1)(t)* only contains off-diag-

onal operators of order 2 and higher in t. Following the general ideas dis-
cussed in Section 2.3, we attempt to construct an operator S1(t) of the form

S1(t)=:
X

S1X (t)= :
_=+, &

:
b

tb
_S1_b (3.16)

The formulas for the operators S1_b can be inferred from Section 2
[formula (2.49)]:

S1_(xy)=ad&1 H0[xy](c-
x_ cy_) (3.17)

Conjugating the Hamiltonian H of the asymmetric single-band Hubbard
model by the operator eS1(t), yields an effective Hamiltonian H (1) [see
(2.45)] given in terms of a new interaction, 8(1), determined by (2.52)�
(2.59) (with BX=X ).

If we perform the decomposition (2.65) ff. we obtain, for the Hubbard
model, the low-energy-sector leading terms

8 (1)
0X={P0

x80xP0
x

1
2 P0

X ad S1X (Q01
X ) P0

X

if X=[x]
if X is a pair of n.n.

(3.18)

It is not hard to see that the two-bond terms V 00
X1 _ X2

= 1
2 [ad S1BX1

(Q01
BX2

)+
S1BX2

(Q01
BX1

)]00 are zero if X1{X2 . The second line on the R.H.S. Of (3.18)
involves operators corresponding to an electron of a particular spin hop-
ping from a singly occupied site to a nearest-neighbor site occupied by an
electron of opposite spin, thus momentarily creating a doubly occupied site
and a hole. They then restore the condition of single occupancy of the sites
by causing one of the electrons on the doubly occupied site to hop to the
neighboring hole.

In fact, the interaction (3.18) coincides with the first-order calculations
often presented in the literature since the initial observation of Anderson.(4)

It is conveniently expressed in terms of the spin operators

Sx := :
s, s$=+, &

c-
xs Sss$cxs$ (3.19)

where S# 1
2 (_1, _2, _3) and _1, _2, _3 are the standard Pauli matrices. Note

that

S 3
x= 1

2(nx+ &nx&) (3.20)
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and

S \
x :=S 1

x\iS 2
x=c-

x\ cx� (3.21)

The operators S +
x , S &

x =(S +
x )* and S 3

x form a basis of a representation of
the Lie algebra of SU(2) on the four-dimensional Hilbert space Hx=
span[<, A , a , A a ]. These operators annihilate the subspace spanned by
[<, A a ] and act irreducibly (in the spin-1�2 representation) on the sub-
space spanned by [ A , a ]. In particular,

P0
xS 3

xP0
x=S 3

x , P0
xS \

x P0
x=S \

x (3.22)

The operators ad S1_b� (Q01
_b), with _=+, &, cause the same electron

to hop in both steps of the process, whereas the operators ad S1_b� (Q01
_$b),

with _{_$, cause electrons of opposite spins to hop in the two steps. These
processes can be expressed in terms of a sequence of creation and annihila-
tion operators of the up-spin and down-spin electrons

P0
X ad S1_b� (Q01

_$b) P0
X=&

1
U

P0
X[Q01

_b� Q
01
_$b+Q01

_$bQ01
_b� ] P0

X

=&
tb�

_ tb
_$

U
P0

X[c-
y_cx_ c-

x_$cy_$+c-
x_cy_c-

y_$cx_$

+c-
y_$cx_$c-

x_ cy_+c-
x_$cy_$ c-

y_ cx_] P0
X (3.23)

For _=_$, (3.23) yields

:
_=+, &

P0
X ad S1_X (Q01

_X) P0
X

=&
2(|tb

+|2+|tb
&| 2)

U
P0

X[ny+(1&nx+)+(1&ny+) nx+] P0
X

=
4(|tb

+|2+|tb
&| 2)

U \S 3
xS 3

y&
P0

X

4 + (3.24)

To arrive at (3.24), we have made use of the identities

P0
Xny_(1&nx_) P0

X=P0
X(1&ny(&_)) nx(&_) P0

X (3.25)
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and

P0
X[nx+ ny& +nx& ny+] P0

X=_&2S 3
xS 3

y+
P0

X

2 & (3.26)

for X=[xy]. In turn, this last identity follows from (3.20), (3.22) and the
relations

P0
xnx_P0

x=P0
x(1&nx(&_)) P0

x (3.27)

and

P0
x(nx+ +nx& ) P0

x=P0
x (3.28)

Similarly, for _{_$, (3.23) yields

:
_, _$=+, &

_{_$

ad S1_b� (Q01
_b)=

2(tb�
+ tb

&+tb�
& tb

+)
U

[S +
y S &

x +S &
y S +

x ]

=
4(tb�

+ tb
&+tb�

& tb
+)

U
P0

X[S 1
xS 1

y+S 2
xS 2

y] P0X (3.29)

From (3.18), (3.24) and (3.29) we conclude that 8 (1)
0X is the well known

Heisenberg interaction

&hS 3
x&

k
2

, if X=[x]

8 (1)
0X={2[|tb

+|2+|tb
&|2]

U \S 3
xS 3

y&
P0

X

4 ++
2(tb�

+tb
&+tb�

& tb
+)

U
[S 1

xS 1
y+S 2

xS 2
y]

if X is a pair of n.n. (3.30)

[h and k being defined in (3.4)], and 8 (1)
0X=0, for all other X/Z&.

If the hopping amplitudes depend neither on the direction of the
hopping nor on the spin orientation &t\b=t\b� =t��then the original
Hamiltonian H4 (1.1) is the standard one-band Hubbard Hamiltonian,
and the interaction (3.30) is that of an isotropic Heisenberg model. This
model is difficult to treat rigorously because of its SU(2) symmetry, and it
is not surprising that the symmetric Hubbard model lies outside the scope
of the methods we discuss in Section 4. For high asymmetry, |tb

+|<<|tb
&|,

the effective interaction (3.30) corresponds to an antiferromagnetic Ising
interaction, perturbed by a small spin-flip term. This interaction exhibits a
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first-order phase transition to a Ne� el phase. This applies in particular to
the Falicov Kimball model, for which tb

+=0 and tb
&=t.

From the discussion of Section 2.3 we know that the other terms of the
transformed interaction 9 (1) are small. The terms corresponding to the rest
of 9 (1)

0 , called 0(1) in (2.65), involve only transitions within the excited
band, while the ``off-diagonal'' remainder is of second order in t [Eq. (2.64)].

3.5. Second-Order Perturbation Theory

To convey the taste of higher order calculations, let us discuss the
block diagonalization process to one further order. The objective is to find
the interaction 8 (2)

0 of (2.78), that is, 8 (2)
0 =[9 (2)

0 ]00, where 9 (2)
0 is the

block-diagonal interaction giving rise to K (2) in (2.75). Thus

8(2)
0 =8 (1)

0 +. (2)
0 (3.31)

where 8 (1)
0 was determined in the previous section [formula (3.30)] and

.(2)
0 is such that V 00

3 +V 00
4 =�Y . (2)

0Y .
Inspection shows that many of the terms comprising V 00

3 +V 00
4 are

zero when the original perturbation Q is just a nearest-neighbor hopping
term. We summarize in Table 1 the non-zero terms of the resulting interac-
tion .(2)

0 , both in its general form and in the form taken in the case where
the hopping constant does not depend on the direction of hopping. Notice
the presence of local projectors. They make the interaction well defined, in
the sense of being volume-independent. Conceptually, they constitute the
main difference between our expressions and similar formulas reported pre-
viously in the literature. In a few terms, the local projectors can be omitted
because of property (3.22). We have also adopted the standard notation

S =
x S =

y :=S 1
xS 1

y+S 2
xS 2

y= 1
2 (S +

x S &
y +S &

x S +
y ) (3.32)

As a further illustration we present in Table 2 the effective Hamiltonians
for the (symmetric) Hubbard and Falicov�Kimball models. The latter is a
totally classical interaction with discrete symmetries, and hence suitable for
the application of the phase-diagram technology of Section 4. In this table,
the symbol (xyz) denotes that x and y are nearest neighbor sites and so
are y and z, while [ w z

x y] stands for four sites around a plaquette. Both
expressions have been derived previously, except for the use of local projec-
tors. The expression for the Hubbard model has been been reported, for
instance, in refs. 8 and 45 (where the hopping parameter is allowed to
depend on the direction), in ref. 10 (together with higher-order corrections,
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Table 1. Second-Order Terms of the Effective Interaction
in the Low Energy Sectora

General case Case tb
\=tb�

\=t\

1
8 P0

X[ad S1X(ad S1X (ad S1X(Q01
X )))] P0

X &
2(t4

++t4
&+6t2

+ t2
&)

U 3 (S 3
xS 3

y&
P0

[x, y]

4 )
&

8(t3
+t&+t3

&t+)
U 3 S =

x S =
y

P0
X _ X $ [ 1

8 :

C6

ad S1X4
(ad S1X3

(ad S1X2
(Q01

X1
))) &P0

[x, y, z] [2(t2
+&t2

&)2

U 3 (S 3
x S 3

y+S 3
yS 3

z&S 3
x S 3

z &
1
4)

+ 1
2 :

C4

ad S2(X4 _ X3)(Q01
2(X1 _ X2))] P0

X _ X $ &
2(t4

++t4
&)

U 3 (S 3
x S 3

z &
1
4)&

4t2
+t2

&

U 3 S =
x S =

z ] P0
[x, y, z]

P0
X _ X $ _ X" _ X $$$ P0

[x, y, z, w] [40(t4
++t4

&)
U 3 S 3

x S 3
y S 3

z S3
w

_[ 1
8 :

C24

ad S1X4
(ad S1X3

(ad S1X2
(Q01

X1
))) &

2(t4
++t4

&)
U 3 (S 3

x S 3
y+c.p.+S 3

xS 3
z+S 3

yS 3
w&

1
4)

+ 1
2 :

C� 4

ad S2(X4 _ X3)(Q01
2(X1 _ X2))] +

8(t3
+t&+t3

&t+)
U 3 [5(S =

y S =
z ) S 3

xS 3
w+c.p.

_P0
X _ X $ _ X" _ X $$$ &

1
4

(S =
x S =

y +c.p.)]
+

40t2
+t2

&

U 3 (S +
x S &

y S +
z S &

w +S &
x S +

y S &
z S +

w )

&
4t2

+t2
&

U 3 [20(S =
x S =

z ) S 3
yS 3

w

+20(S =
y S =

w ) S 3
x S 3

z+S =
x S =

z +S =
y S =

w ]] P0
[x, y, z, w]

a Expressions are given for the relevant orders of the general formula (2.63) (leftmost column)
and for the particular case of the Hubbard model with direction-independent hopping
(rightmost column). First line: X=(xy) . Second line: X=(xy) , X $=( yz) , C6 is the set
of sequences (X1 , X2 , X3 , X4) such that two of its members coincide with X and the remain-
ing ones with X $. C4 is the subset of C6 formed by the sequences (X, X $, X, X $),
(X, X $, X $, X ) or their X to X $ permutations. Third line: X=(xy) , X $=( yz), X"=(zw) ,
X $$$=(wx) , C24 is the set of sequences (X1 , X2 , X3 , X4) coinciding with (X, X $, X", X $$$) or
any one of its permutations, C� 4 is the set of sequences (X1 , X2 , X3 , X4) coinciding with
(X, X $, X", X $$$) or any one of its cyclic permutations. ``c.p.'' means ``cyclic permutations''
obtained by x � y � z � w � x.
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Table 2. Second-Order Effective Hamiltonians in the Low Energy Sector for
the Hubbard (t+=t&=t) and Falicov�Kimball (t+=0, t&=t) Models

One-band Hubbard &:
x \hS 3

x+
k
2

P0
x++\4t2

U
&

16t4

U 3 + :
(xy) \Sx } Sy&

P0
[x, y]

4 +
+

4t4

U 3 :
(xyz)

P0
[x, y, z] \Sx } Sz&

1
4+ P0

[x, y, z]

&
4t4

U 3 :
[ x y

w z
]

P0
[x, y, z, w] \Sx } Sy+c.p.+Sx } Sz+Sy } Sw&

1
4+ P0

[x, y, z, w]

+
80t4

U 3 :
[ x y

w z
]

[(Sx } Sy)(Sz } Sw)+(Sx } Sw)(Sy } Sz)&(Sx } Sz)(Sy } Sw)]

Falicov�Kimball &:
x \hS 3

x+
k
2

P0
x++\2t2

U
&

2t4

U 3+ :
(xy) \S 3

xS 3
y&

P0
[x, y]

4 +
&

2t4

U 3 :
(xyz)

P0
[x, y, z](S 3

x S 3
y+S 3

y S 3
z&2S 3

x S 3
z ) P0

[x, y, z]

&
2t4

U 3 :
[ x y

w z
]

P0
[x, y, z, w](S 3

x S 3
y+c.p.+S 3

xS 3
z+S 3

y S 3
w) P0

[x, y, z, w]

+
40t4

U 3 :
[ x y

w z
]

S 3
x S 3

yS 3
z S 3

w

up to eighth order) and in ref. 37. Our contribution amounts to showing
that if one systematically uses local projections, unlike in the first three
references, the remainder term in a perturbative block diagonalization of
the Hamiltonian can be controlled rigorously. This is our new result. It is
an illustration of our general results of ref. 12.

The second-order effective classical Hamiltonian for the Falicov�
Kimball model and its ground states, were studied in ref. 31. In ref. 23 a
more general expression was obtained involving hopping amplitudes that
depend on the direction: t[ yx]=t[ yx]*=|t[ yx]| ei%xy, %xy=&%yx . Such com-
plex hopping amplitudes describe the influence of a magnetic field. Our
expansion methods provide systematic control of remainder terms.

3.6. Higher-Order Perturbation Theory

While straightforward, in principle, the computation of higher-order
transformed interactions is a tedious and error-prone process. (In fact,
already the second order computations lead to monstrous expressions if
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hopping is allowed to depend on the direction as well as spin.) The use
of computer codes to perform symbolic algebra becomes mandatory. To
encourage industrious readers, we sketch some basic elements of the
algebra needed to treat the resulting expressions.

The different terms arising are products of two types of operators:
(i) creation and destruction operators, and (ii) projections. We can there-
fore classify the relevant terms in three categories.

3.6.1. Products of Creation and Destruction Operators. The
algebraic manipulations of these operators are well known: one uses the
anti-commutation relations (2.9)�(2.10) to obtain expressions in terms of
the occupation numbers nx_=c-

x_ cx_ and the spin operators S \
x defined in

(3.21). Furthermore, differences of occupation numbers can be written in
terms of S 3

x via (3.20).

3.6.2. Products of Projections. There is only one equation to
consider:

P i
xP j

x=P i
x $ij , i, j=0, 1 (3.33)

A similar equation holds for projections on any set X. Another pair of
potentially useful relations are

P0
X P0

X� =P0
X� , P1

X P1
X� =P1

X (3.34)

whenever X/X� .

3.6.3. Products of Projections and Creation and Destruc-
tion Operators. This is the non-trivial part of the algebra. Perhaps, its
most important relations are the intertwining relations

cx_P0
x=P1

xcx_ cx_ P1
x=P0

xcx_
(3.35)

c-
x_P0

x=P1
xc-

x_ c-
x_P1

x=P0
x c-

x_

for arbitrary _=\. They allow a purely algebraic verification of which
terms are zero. We remark that projections of the form P1

X , with X contain-
ing more than one site, are not directly suited for the use of (3.35), because
these projections are not products of single-site projections. We then use
that

P1
X=1&P0

X=1& `
x # X

P0
x (3.36)
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As an example, let us sketch the algebraic proof that

[ad S1_X (Q01
_$X $)]00=0 (3.37)

for X=(xy) and X $=( yz) , with x{z; a fact only parenthetically men-
tioned after (3.18). Indeed, the left-hand side of (3.37) is a combination of
products of the form

P0
[x, y, z] P0

[x, y] c-
y_ cx_P1

[x, y]P1
[ y, z]c-

z_$cy_$P0
[ y, z] P0

[x, y, z] (3.38)

plus various x W y and y W z permutations. We first notice that the middle
projections P1

X can be removed. To see this we use (3.36) and then move,
for instance, the resulting factors P0

y to the far left and far right through the
intertwining relations (3.35). Such factors emerge as P1

y and cancel with the
corresponding factors P0

y at both ends [relation (3.33)]. We are left with

P0
[x, y, z] c-

y_ cx_c-
z_$cy_$P0

[x, y, z] (3.39)

where we have also used (3.34). To see that such a term is zero, use again
the intertwining relations to show, for instance, that as there is an odd
number of creation and annihilation operators involving the site z, the
leftmost P0

z can be written as P1
z on the right. It then annihilates with the

corresponding P0
z .

There are many other useful relations involving products of projec-
tions and creation and destruction operators. Besides the previous formulas
(3.22), (3.25), (3.26) and (3.27)�(3.28), we mention

nx_ P0
x=[1&nx(&_)] P0

x (3.40)

Nx_ P1
x=

nx

2
P1

x (3.41)

and

c-
x_$c

-
x_ P0

x=0 (3.42)

c-
x_cx(&_) P1

x=0 (3.43)

for any _, _$=\. By the intertwining relations (3.35) the identities
(3.40)�(3.43) can also be written with the projections on the right or on the
left and the right.
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4. LOW-TEMPERATURE PHASE DIAGRAMS

4.1. Foreword on Quantum Pirogov�Sinai Theory

The purposes of Sections 2 and 3 was to construct a unitary operator,
U (n)(*), with the property that the conjugated Hamiltonian

H (n)
4 (*)=U (n)

4 (*) H4(*) U (n)
4 (*)*

=H (n)
04(*)+V (n)

4 (*) (4.1)

of some quantum lattice system is ``block-diagonal'' to order |*|n+1. By this
we mean that the matrix elements of V (n)

4 (*) between ground states, or
approximate ground states (low-energy states) of H (n)

04(*) are of order n+1.
Our method to construct U (n)

4 (*) has been (a convergent form of ) analytic
perturbation theory.

In attempting to gain some insight into the structure of ground states
and low-temperature equilibrium states of the Hamiltonian H (n)

4 (*), it is
tempting to argue that one should neglect the perturbation V (n)

4 (*) and
study the ground states and low-temperature equilibrium states of H (n)

04(*)
��hoping that they are close to those of H (n)

4 (*). Unfortunately, this hope
is unjustified, in general.

It is a well known fact that arbitrarily small perturbations can have a
drastic effect on low-temperature phase diagrams. This is typically the case
when the truncated part has an infinite degeneracy. For example, when
there is a continuous symmetry, states are usually grouped in bands with
gapless intraband excitations. An arbitrarily small additional term can split
the lower bands and hence change the phase diagram. Such models are
hard to treat rigorously; in particular, no such treatment is available for
the (symmetric) Hubbard model, despite our control on the perturbation
series of Section 3. The case in which the truncated interaction has an
infinite degeneracy not connected with a continuous symmetry is usually
more tractable. Often, entropy effects (quantum and classical) are the
determining aspect, and there exist techniques to deal with them, as we will
illustrate below.

The simplest situation arises when the truncated interaction has a zero-
temperature phase diagram involving only finite degeneracies. In favorable
cases, we expect that each of these ground states gives rise to a corre-
sponding ground state, and a low-temperature state, of the full, untruncated
interaction. The detection and description of these phases, however, requires
some additional machinery. Indeed, even at zero temperature, where only
energy plays a role, we cannot rely on plain diagonalization procedures.
First, there is no hope of achieving exact block diagonalization of the
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whole family of Hamiltonians [H4] needed to pass to the thermodynamic
limit, barring miracles (that is, relatively trivial and uninteresting situa-
tions). And, second, the estimation of the effect of the ``undiagonalized''
remainders is a delicate matter. The remainder term, V (n)

4 (*), makes a
negligible contribution to the energy density. But it may have a decisive
quantum entropic effect: It may alter the overall wave function by allowing
``virtual quantum transitions'' between classical configurations. The situa-
tion is even more involved at nonzero temperatures, due to the appearance
of thermal fluctuations.

Quantum Pirogov�Sinai Theory. Its bare-bones version(11, 5)

applies to systems with a leading part that is ``classical,'' in the sense of
being diagonal in a tensor product basis (Section 2.2). It is based on
contour expansions. The Duhamel expansion is used to write partition func-
tions and expectations as sums over (d+1)-dimensional piecewise cylindri-
cal surfaces��the (d+1)-st axis corresponding to the inverse temperature
(imaginary time) axis. Such ``contours'' have cylindrical pieces, correspond-
ing to Peierls-like contours for the classical part of the interaction, and a
finite number of section changes caused by the quantum perturbation. The
objective of the theory is to prove that, in the thermodynamic limit, these
contours are sparse and far apart. This yields a precise mathematical
representation of states as ``classical ground states modified by quantum
and thermal fluctuations.'' In fact, both types of fluctuations are treated
on the same footing. So quantum Pirogov�Sinai theory provides a unified
description of ground- and low-temperature states.

In brief, the theory establishes sufficient conditions for the energy to
dominate over further quantum and thermal entropic effects. As a conse-
quence, the latter can only cause small (and smooth) deformations of the
zero-temperature phase diagram of the classical part. That is, the phase
diagram remains stable under quantum perturbations and small raises of
temperature. This does not mean that all phases remain stable throughout
the phase diagram. For instance, small entropic effects can tilt the balance
in favor of particular phase(s) of a coexistence region and cause the disap-
pearance of the remaining ones when the thermal or quantum perturbation
is switched on. But the theory assures that the unfavored phases reappear
for slightly modified parameter values, that is, the perturbed system will
also exhibit a coexistence manifold, albeit a little shifted and deformed.
Moreover, the theory provides a criterion to determine which phases are
stable, and, in fact, it presents a picture of what ``stable phase'' means. [As
a matter of fact, below we shall resort only to this stability criterion. The
part on the stability of phase diagrams will not be useful, as coexistence
lines will, in all cases, involve infinite degeneracies.]
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As we discuss in more detail below, the conditions on the classical part
required by the theory are of two types: First, it must lead to finite ground-
state degeneracies within the region of interest, and, second, it must satisfy
the Peierls condition which roughly requires the energy cost of an excitation
to be proportional to the area of its boundary. The first requirement forces
us to stay away from regions of infinite degeneracy. So, in principle, we
would be unable to deal with the line ++=+& of the phase diagram of
Fig. 1. We shall see below that the quantum hopping actually helps us
there. Similarly, models with low-cost energy excitations, like the balanced
model, are out of reach. In fact, in ref. 16 it is shown how quantum hop-
ping brings this model within reach.

When applicable, the theory does a complete job: It accounts for
entropic effects and provides a full description of states. Nevertheless, the
theory has a limited scope In fact, it seems to be applicable only when
nothing interesting happens as a result of the perturbation. The hidden
card is our perturbation technique. In many instances, it produces a par-
tially diagonalized interaction with a leading classical part incorporating
crucial quantum effects. If such a leading part satisfies the right hypotheses,
the subsequent application of Pirogov�Sinai theory will prove the existence
of phases exhibiting truly quantum-mechanical features. In fact, a slight
extension of Pirogov�Sinai is needed in these cases, showing that transi-
tions within the excited band have a negligible effect, regardless of the
order. Such an extension, based on a more careful definition of contours
that distinguishes ``high-to-high'' transitions from the rest, is presented in
ref. 12. Below, we prove that hopping produces quantum symmetry break-
ing among the ground states of the on-site Hubbard interaction, which
brings the degeneracy down to a finite one. This is an instance of ``quantum
entropic selection.'' Another example, presented in ref. 16, is the ``quantum
restoration of the Peierls condition'' taking place in the balanced model.

Incidentally, the thermal entropic selection is a better known
phenomenon, which, in some cases, can trigger a complicated pattern of
phases with cascades or staircases of phase transitions. This effect has been
the object of extensions of Pirogov�Sinai theory based on the notion of
restricted ensembles.(6, 44, 24, 7, 34) The extension of this theory to quantum
systems is a promising direction of research. The work in ref. 35 can be
considered as a step in this direction, though it does not treat genuinely
degenerate quantum interactions and only resorts to restricted ensembles
as an alternative way to exhibit degeneracy breaking.

Quantum Pirogov�Sinai theory acts, thus, as the link needed to pass
from diagonalization��at the level of interactions��to phases. It is a power-
ful tool that can be used as a black box: Once the system is seen to be
thermodynamic within its range of applicability there is nothing else to do;
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the theory provides a flexible and complete description of the resulting
phases. We know of no other comparably general and versatile approach
to the study of quantum statistical mechanical phase diagrams. We see the
methodological difference between quantum mechanics and quantum
statistical mechanics. In the former, the ultimate goal is to diagonalize,
exactly, the Hamiltonian of some system. In the latter, an exact
diagonalization is impossible. The goal is then to do the minimal pertur-
bative diagonalization needed to bring the system within the reach of some
theory enabling us to determine the phase diagram, like our Pirogov�Sinai
approach. Once such a theory takes over, we are done: All the required
information is at our disposal; any further diagonalization is a waste of
time.

4.2. Summary and hypotheses

4.2.1. Scope of the Theory. Quantum Pirogov�Sinai theory
applies to interactions of the form (2.18), that is,

8=8cl+Q (4.2)

where 8cl=[8cl
X ] is a finite range classical interaction (classical in the

sense of Section 2.2), and Q=[QX ] is a possibly quantum interaction. The
operators comprising both parts depend on a finite family of perturbation
parameters *=[*1 ,..., *k]. For our applications below, 8cl will be the lead-
ing part 8 (n)

0 of a transformed interaction of an appropriate order n. The
theory has two consequences:

(PS1) Stability of states: Under suitable hypotheses, it determines
the different periodic states of the full interaction, for small values of the
parameters * and small temperatures. Each of these states can be traced, in
fact, to some ground state of 8cl, from which it differs in the addition of
a diluted gas of thermal and quantum excitations. In such a case, the
corresponding ground state of 8cl is said to be stable at the given tem-
perature and values of *.

(PS2) Stability of phase diagrams: It establishes (sufficient) condi-
tions under which the zero-temperature phase diagram of the classical part
remains ``stable'' under the addition of the quantum part, Q, and�or
increasing temperature. That is, the manifolds where different phases
coexist are, for small temperatures and quantum perturbations, smooth
and small deformations of the corresponding coexistence manifolds of
ground states of the classical part.
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The theory requires two sets of hypotheses: (i) the classical leading
part must have a finite ground-state degeneracy and satisfy the Peierls
condition explained below, and (ii) the matrix elements of the quantum
part must be sufficiently small.

4.2.2. Hypotheses on the Classical Part. Let us discuss the
hypotheses on the classical part first. The finite degeneracy refers to the
presence of only a finite number of periodic ground states for 8cl. In the
present setting (m-potentials with minimal bond energies normalized to
zero) these are configurations |1 ,..., |p such that 8cl

X(|i )=0 for all bonds X.
The Peierls condition refers to the well known generalized Peierls con-
tours.(41, 40, 43) They are constructed by means of sampling plaquettes

W (a)
x :=[ y # Z& : | yi&x i |�a, for 1�i�&], for x # Z& (4.3)

The set of sampling plaquettes where a configuration | does not coincide
with any of the ground states |i is called the defect set of |. The contours
of | are pairs #=(M, |M), where M��the support of #��is a maximally
connected (with respect to intersections) component of the defect set. The
radius a of the sampling plaquettes must be larger than the range of 8cl

and the period of each of the |i , so that, knowing the set of contours, one
can univocally reconstruct the configuration |. In particular, when 8cl is
a transformed interactions 8(n)

0 , a must be larger than the radius R of the
plaquettes used to define protection zones (Section 2.2).

For models whose interactions and excitations are determined by
nearest-neighbor conditions, like the Ising model, one can use the ``thin''
Peierls contours(39, 13, 18) traced with segments midway between pairs of
adjacent sites. But in more general cases one must resort to definitions as
above to ensure a one-to-one correspondence between configurations and
families of contours. The energy of a configuration is, in the present setting,
the sum of energies, E(#), of contours #. Here, E(#) is the energy of the con-
figuration having # as its only contour. A model satisfies the Peierls condi-
tion if each contour has an energy proportional to the cardinality of its
support, s(#). That is,

E(#)>}s(#) (4.4)

for some }>0 called the Peierls constant.
In this paper, we consider a more detailed Peierls condition based on

the distinction of two levels of excitations��low-and high-lying��of the
classical part. The distinction is made through a suitably defined family of
local projections P0

Y . With respect to this family, a configuration | exhibits
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a high-lying excitation in Y if P0
Y |{|. For the applications of this paper,

these projections are exactly those defined in Section 2.2, because the low-
lying excitations of 8cl=8 (n)

0 are among the local ground states of the
original 80 . The high-energy defect set of a configuration | is the union of
the plaquettes W (a)

x where it exhibits a high-lying excitation. A system
satisfies a two-level Peierls condition if for each contour # we have

E(#)>}s(#)+Ds(#high) (4.5)

where #high is the part of the high-energy defect set contained in #. This con-
dition means, in particular, that high-energy excitations lead to an additive
excess energy measured by D>0.

Given that 8cl is allowed to depend on the perturbation parameters *,
such a dependence is also expected for the Peierls constants } and D.

4.2.3. Hypotheses on the Quantum Part. First, we decompose
the operators of the quantum interaction, Q=[QX ], into ``low � low''
(ll), ``low � high'' (lh), ``high � low'' (hl) and ``high � high'' (hh) com-
ponents:

Qll
X :=P0

X QXP0
X

Qlh
X :=(1X&P0

X ) QX P0
X

(4.6)
Qhl

X :=P0
X QX (1X&P0

X )

Qhh
X :=(1X&P0

X ) QX (1X&P0
X )

The conditions on the quantum part are that there exist sufficiently
small numbers =:# and $ such that, for :, #=l, h

&Q:#
X &�=:#$s(X ) (4.7)

The region of validity of the two-level quantum Pirogov theory depends on
the parameter

' :=max \=ll $
}

, $ � =hl =lh

}(}+D)
,

=hh $
}+D

,
=lh $

}+D
,

=hl $
}+D+ (4.8)

Quantum Pirogov�Sinai theory converges provided ' is sufficiently small.
The original (one-level) quantum Pirogov�Sinai theory discussed in

refs. 11 and 5 corresponds to taking D==hl==lh==hh=0.
Interactions obtained as a result of the partial block-diagonalization

procedure of Section 2, contain terms proportional to powers of *�D;
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(* measures the strength of the quantum perturbation, and D is propor-
tional to a typical energy-denominator). Condition (4.7) thus imposses the
bound

max \*,
*
D +<$ (4.9)

where $ is as in (4.7); ($ must be chosen small enough for the perturbation
expansions to converge). The size of the hl-matrix elements of the quan-
tum perturbation, [QX#Q (n)

X (*)], in the Hamiltonian H (n)
4 (*) is estimated

by

&Qhl
X &t&Qlh

X &t
*n+1

Dn $s(X )&n&1 (4.10)

Comparing (4.10) to (4.7) we find that

=hl==lh=O \ *n+1

Dn $n+1+ (4.11)

As the ``high � high'' part of the original interaction survives unaltered,

=hh=O \*
$+ (4.12)

4.3. Stability of Phases

4.3.1. The Basic Criterion. Our criterion for the stability of
phases is based on the use of cluster-expansion technology to construct
some objects f $1 ,..., f $k ��where f $i is associated to the ground state |i of 8cl

��called truncated free energy densities. They are defined provided that

= :=max(e&;O(}), ')<=0 (4.13)

for some (small) constant =0 that depends on parameters like the range
of 8cl, dimensionality of the lattice, size of the sampling plaquette, and
dimension of the on-site Hilbert space. Within the convergence region, the
truncated free energies are analytic functions of ; and of any parameter on
which the interaction has an analytic dependence. They determine the
stability of phases in the following way.
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Stability Criterion. Assume that * is such that 8cl(*) has a finitely
degenerate ground state and satisfies the Peierls condition (4.5), and assume
that Q(*) satisfies hypotheses (4.7). Then if, for some values of ; and *
within the region (4.13),

Re f $p(+
�
)= min

1�q�k
Re f $q(+

�
) (4.14)

for some p with 1�p�k, the following holds:

(i) f $p(+
�
) coincides with the true free-energy density of the system;

(ii) the infinite-volume limit

lim
4ZZd

tr|p
4 Ae&;H 4

| p

tr|p
4 e&;H 4

| p =: (A) |p
;* (4.15)

exists for any local operator A;

(iii)

|(A) |p
;*&(|p | A ||p) |�&A& |X | O(=) (4.16)

for any operator A # AX , (X is a finite subset of the lattice).

The notation H |p
4 stands for the Hamiltonian with ``external condition'' |p ,

that is, the sum of all 8X with X & 4{<, but allowing only matrix
elements between vectors that coincide with |p outside 4. The symbol tr|p

4
indicates a trace over the space of such vectors.

Note that, in (4.15), H |p
4 is the ``effective'' Hamiltonian, rather than

the original Hamiltonian defining the model. The effective Hamiltonian and
the original one are unitarily equivalent, the unitary conjugation being
given by an operator U (n)

4 (*) as in (2.79), (2.82), (2.83). In order to select
a stable phase, we impose boundary conditions |p outside boxes 4 on the
effective Hamiltonians rather than the original Hamiltonians. One could
reconstruct ``boundary conditions'' for the original Hamiltonians corre-
sponding to the boundary conditions that we impose on the effective
Hamiltonians. (Typically, ``boundary conditions'' for the original
Hamiltonian will constrain configurations not only outside 4 but also
insided 4 but near �4. We shall not attempt to provide details concerning
the map from boundary conditions for the original Hamiltonians to bound-
ary conditions for the effective Hamiltonians. Boundary conditions do not
have an operational meaning here (corresponding, e.g., to certain experi-
mental conditions), but are mathematical devices to select stable phases that
should be chosen in as convenient a way as possible. In fact, this is the
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conventional role of boundary conditions in statistical physics. When we
describe a magnetic material in terms of a quantum Heisenberg model we
are working with an effective Hamiltonian; (there are no explicit exchange
interactions present in the fundamental Schro� dinger Hamiltonian!). But we
do not hesitate to impose boundary conditions directly on the Heisenberg
Hamiltonian, rather than on the fundamental Schro� dinger Hamiltonian of
the material, in order to select stable pure phases (e.g., the direction of
spontaneous magnetization).

We shall say that there is a stable |p -phase whenever (4.14) is
satisfied.

We shall not enter here into the technicalities of the actual proof of
this criterion, which can be found in ref. 11. Instead, we present some
general comments on the basic construction.

The above criterion is proven by resorting to a low-temperature
expansion obtained by iteration of Duhamel's formula for the exponential
of the sum of non-commuting matrices. This adds an extra continuous
variable ranging from 0 to ;. There is one such expansion for each ground
state of 8cl, involving a ``sum'' of terms labelled by the sites of the lattice
(``spatial variables'') and the continuous ``inverse temperature'' or ``time''
variable. Every term can be labelled by a piecewise cylindrical surface
contained in Zd_[0, ;], which can be decomposed into connected com-
ponents called quantum contours. Outside the surface, the space is filled
with the corresponding ground state of 8cl, and the contours are transition
regions whose interiors are occupied by different ground states of 8cl. The
contours have spatial sections formed by the usual classical contours
described above, which grow cylindrically in the ``time'' direction until
there is a sudden change of section due to the action of a quantum bond.
The hypotheses on the quantum part ensure that the weight of this contour
decays exponentially with its area: The exponential cost of each ``vertical''
cylindrical piece is given by the Peierls condition (4.5), while each
``horizontal'' change of section is penalized by a term (4.7) according to the
type of transition involved. Each contour has a finite number of section
changes.

We must distinguish between ``short'' and ``long'' contours. The long
contours traverse the whole ``time'' axis from zero to ;. Therefore, their
cost is at least exp(&const ;), and they disappear in the limit ; � �. In
particular, a purely classical system would have only contours of this type
which, in fact, would be straight cylinders with no section changes. ``Short''
contours appear and�or disappear at intermediate values of the continuous
integration variable. Thus they involve some changes of sections, and their
cost is proportional to $. Such contours survive the limit ; � � and con-
tribute to the quantum ground state of the full interaction 8.

597Tight-Binding Models



We see that, in this approach, thermal and quantum effects are put on
a similar footing. They are both sources of entropy associated to different
contour geometries. A low-temperature equilibrium state can be visualized
as a ``sea'' configured of the corresponding ground state of 8cl plus the fluc-
tuations represented by contours. In particular, the short contours can be
interpreted as ``ground state fluctuations.'' At low temperatures and small
values of $, these fluctuations are dilute, because their large energy cost
overwhelms the ``entropy gain.'' Thus expectations in such a state differ little
from expectations in the associated ground state of 8cl.

4.3.2. Stability and Symmetries. Two types of symmetries can
be distinguished. First, there are symmetries that leave each term of the
interaction (or of an equivalent form of it) invariant. Such a symmetry is
associated, for each finite volume 4, to a unitary operator S4 such that

S4 H |p
4 S &1

4 =H S|p
4 (4.17)

[The vector S|p is easy to visualize at the level of classical configurations.
In a quantum statistical mechanical formalism, it is defined, for instance,
via limits of S &1

4 |p .] Examples of these symmetries are the spin-flip sym-
metry of Ising models in zero field, or the particle-hole symmetry of the
Hubbard model at half filling.

On the other hand, there are symmetries associated to operations on
the lattice, like translations and rotations. They map each term of the inter-
action into a different term, but leave the whole interaction invariant. Each
such symmetry is defined by a bijection T : Zd � Zd that yields natural
bijective maps between configurations��(T|)x=|T&1x��and between local
operators��(T8)X=8T&1X (for notational simplicity we denote the dif-
ferent transformations with the same symbol). The latter map does not
leave Hamiltonians invariant, but connects Hamiltonians corresponding to
translated volumes:

TH _p
4 T &1=H T_p

T&14 (4.18)

In general, a symmetry, R, can be a composition, ST, of symmetries
of the previous two types.

The criterion of stability of phases presented above respects symmetries.
Indeed, we say that a symmetry R connects a family of configurations
[|1 ,..., |l] if

Ri|1=|i+1 for 1�i�l&1 (4.19)
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Then, under the hypotheses of the preceding subsection, we have:

Ground states of 8cl connected by a symmetry
of 8 are either all stable or all unstable (4.20)

We briefly sketch a proof of this fact, as it is not explicitly given in
ref. 11 or in ref. 12. The key object to look at is the partition function
5p(V ) for piecewise cylindrical, bounded regions, V, of Zd_[0, ;]. This
object is defined, through the contour expansion, as the sum of all allowed
contour configurations inside V compatible with the boundary condition
|p . For regions V of the form 4_[0, ;], with 4 a finite region of Zd, one
has

5p(4)=tr|p
4 e&;H 4

|p
(4.21)

Looking carefully into the definition of 5(V ), it is not hard to conclude
that its behavior with respect to symmetries is similar to that of (4.21).
Namely, if S a symmetry of the first type,

5S|p
(V )=5|p

(V ) (4.22)

and, if T is a symmetry of the second type

5T|p
(V )=5|p

(T &1V ) (4.23)

Here T &1V refers to the space-time region V transformed by the map T &1.
These partition functions are involved in the following characteriza-

tion of stability: A ground state |p of 8cl is stable in the region (4.13) if,
and only if, there exists some constant C such that

}
5|j

(V )

5|p
(V ) }�exp(C |�V | ) (4.24)

for every bounded region V/Zd_[0, ;] and 1� j�k. Here |�V |
indicates the area of the external boundary of V.

The criterion (4.20) is now easy to verify: Assume that some ground
states |1 ,..., |l are connected by a symmetry. If the symmetry is of the first
type, then by (4.22)

51(V )= } } } =5l(V ) (4.25)

for all piecewise cylindrical V/Zd_[0, ;]. Hence (4.24) is either verified
by all p=1,..., l or by none.
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Consider then a symmetry of the second type, and assume, for con-
creteness, that |l is stable. Then (4.24) is verified for p=l and all j, in
particular for j=q where |q=T &(l&q)|l (1�q�l) [see (4.19)]. But
then, from (4.23) we have

}
5|l

(V )

5|q
(V ) }= }

5|l&q
(T &(l&q)V )

5|l
(T &(l&q)V ) }�exp(C |�V | ) (4.26)

The last inequality follows from the assumed stability of |l and the fact
that |�(TV )|=|�V |. Therefore, for any 1�q�l, and any 1� j�k,

}
5|j

(V )

5|q
(V ) }= }

5|j
(V )

5|l
(V ) } }

5|l
(V )

5|q
(V ) }�exp(2C |�V | ) (4.27)

where the inequality follows from the stability of |l [Eq. (4.24)] and from
(4.26). We conclude that all the ground states |1 ,..., |l are stable (with an
exponential constant 2C).

4.4. Stability of Phase Diagrams

More generally, one studies families of interactions 8+ parametrized
by a finite set of parameters +=[+1 ,..., +s]��typically fields or chemical
potentials��and one is interested in determining the corresponding phase
diagram, that is, in obtaining a catalogue of the different phases present for
different values of +. If for the values of + under consideration the system
satisfies the hypotheses described above, one can apply quantum Pirogov�
Sinai theory and determine the phase diagram on the basis of condition
(4.14), now involving +-dependent truncated free energies f $p . The cluster
expansion tells us that the difference between these truncated free energies
and the corresponding energy densities is of the order of the parameter =;*

introduced in (4.13). Therefore, given the smoothness properties of f $p , one
would expect that the phase diagram, for ; and * in the region (4.13),
differs little from the phase diagram of 8cl at zero temperature.

This can, indeed, be proven, under some minor additional hypotheses:
Chiefly, (i) bounds similar to (4.7) but involving the partial derivatives
�Q+X ��+i , and (ii) a hypothesis of regularity of the phase diagram of 8cl

+ .
The latter roughly means that the parameters + completely break
degeneracies among the ground states, so the Gibbs phase rule is satisfied.
The detailed hypotheses can be found in [12, Section 5.2]. The conclusion
is:

If the hypotheses sketched above are satisfied for an open region O of
the space of parameters +, then the phase diagram for ; and * in a region
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of the form (4.13) is regular and is a smooth deformation of the zero-tem-
perature phase diagram of 8cl

+

�

in O. The displacement of the different
coexistence manifolds is of the order of =;* .

5. PHASE DIAGRAM FOR THE FALICOV�KIMBALL REGIME

We now apply the phase-diagram technology described in the previous
section to asymmetric Hubbard models, whose perturbation expansion has
been discussed in Section 3. Let us denote

t= sup
[x, y]

|t[x, y]
& | (5.1)

t+= sup
[x, y]

|t[x, y]
+ | (5.2)

(with a slight abuse of notation). Let us see how further features of the
phase diagram appear as we consider higher orders in the perturbation
expansion.

5.1. Phase Diagram to Order t0

To this order, the classical leading interaction correspond to a
(formal) Hamiltonian

H cl(0)=U :
x

nx+ nx&&++ :
x

nx+ &+& :
x

nx& (5.3)

We see from Fig. 1 that it trivially satisfies the hypotheses of Section 4.2.2
��in fact for the one-level theory��as long as one avoids the lines where the
different regions with a unique ground state intersect. In the latter we loose
the required finite degeneracy. The conclusion is, therefore, that different
ground states remain stable for chemical potentials in the open regions of
uniqueness. The range (4.13) shrinks to zero as we approach a coexistence
manifold, because so do the different Peierls constant (which are of the
order of the energy of the lowest excitation). This phase stability remains
true upon the addition of electron hopping or any quantum perturbation
which is translation-invariant and satisfies '�=0 (for instance small ion-
hopping).

5.2. Phase Diagram to Order t2�U

To this order we can exhibit more features of the phase diagram
within the shaded region in Fig. 2. The transformed interaction was
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obtained in Section 3.4 [Formula (3.30)]. It has a leading classical part

H cl(1)=U :
x

nx+ nx& +
2
U

:
(xy)

|t[x, y]
& | \S 3

xS 3
y&

P0
[x, y]

4 +&h :
x

S 3
x (5.4)

whose periodic ground-state configurations are given in Fig. 3. This inter-
action satisfies a two-level Peierls condition. The low-lying excitations have
one particle per site and involve a Peierls constant

}t4t2�U\h+O(t4�U 3) (5.5)

The excess energy for configurations in the non-singly occupied band gives
an extra Peierls rate

D=max(U&+0 , +0)=O(U ) (5.6)

(+0 defines the boundaries of the shaded region in Fig. 2; for concreteness
we are considering +0tU ). We see that the leading part (5.4) satisfies the
hypotheses required for the classical part in Section 4.2.2 as long as

4t2�U\h+O(t4�U 3)>0 (5.7)

that is, except within bands of width O(t4�U 3) centered at the lines
h=\4t2�U. Moreover, the summability of the transformed interaction is
guaranteed only if D>>}. This condition determines the limits of the
shaded region in Fig. 2.

The ``low � low'' transitions must include at least one ionic jump,
hence a factor t+ . Therefore [see e.g., the quantum correction in (3.30)],

=ll=O \t+

t
}

t2

U$+ (5.8)

where $ has been chosen sufficiently small to guarantee the convergence of
the partially diagonalized interaction. From this, (4.11) (with n=1) and
(4.12) we see that the quantum perturbation satisfies hypotheses (4.13) if

t+

t
,

t
U

<=~ 0 (5.9)

where =~ 0 is a small number that shrinks to zero when } tends to zero (and
at the boundaries of the shaded region in Fig. 2).

We conclude that quantum Pirogov�Sinai theory [together with the
symmetry criterion (4.20)] proves that for nonzero but small values of t,
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the phase diagram of the model is as in Fig. 4. The ground states
correspond to the configurations shown in the figure plus quantum fluctua-
tions (=short space-time contours). Furthermore, they remain stable for
small temperatures (long contours appear sparingly) and small values of t+

(new contours appear, rarely, involving the new type of quantum transi-
tions). This picture is valid outside an excluded O(t4�U 3)-vicinity of the
lines h=\2t2�U where the Peierls constant } cannot be guaranteed to be
positive, and inside the shaded region of Fig. 2 where }<<D. This stability
persists under the addition of arbitrary quantum perturbations satisfying
(4.7) that do not break translation invariance.

5.3. Phase Diagram up to Order t4�U 3

In order to analyze in more detail the excluded regions of widths
O(t4�U 3), we need to consider the next order of perturbation theory. For
the direction-independent case (tb

&#t), the leading classical interaction, to
this order, is given by the terms in Table 2. At this point, the hardest part
of the analysis is, by far, the determination of the ground states of this
complicated classical part. Fortunately, this has been done before, see
refs. 31 and 23: the ground states correspond to the configurations depicted
in Fig. 5. We see that the classical part, to fourth order, satisfies the
hypotheses required by Pirogov�Sinai theory, except in the vicinity of four
lines of infinite degeneracy. In regions at a distance O(t6�U 5) from these
lines, the Peierls constant } is of order t4�U 3. The gap D is still given by
(5.6).

Moreover, the quantum part has coefficients =hl and =lh given by
(4.11) with n=2, and =hh given by (4.12), while

=ll=O \t+

t
}

t4

U 3 $4+ (5.10)

[see e.g., the quantum corrections in Table 1].
As a consequence, the stability criterion of Section 4.3.1 is applicable,

for large ; and t satisfying (5.9) with a smaller =~ 0 . Together with the sym-
metry considerations (4.20), this implies the stability of the ground states
of Fig. 5��except at the excluded bands of width O(t6�U 5) around the
coexistence lines��under the addition of temperature, ionic hopping
[within the limits impossed by (5.9)], and any other translation- and rota-
tion-invariant quantum perturbation satisfying (4.13). The phase diagram
of Fig. 5 is thus obtained.

A similar analysis can be performed for cases in which the hopping
depends on the direction. In particular, in the presence of magnetic flux,
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i.e., if t[ yx]
& =t exp(i%yx) with %yx # (0, 2?), our block-diagonalization proce-

dure yields, to order t4�U 3, an effective classical interaction with terms
given in [23, Formula (3.11)]. As shown in this reference, the phase
diagram for the interaction with flux involves the same ground states as in
the flux-less case, but with deformed manifolds of infinite degeneracy. The
Pirogov�Sinai approach proves the stability of these ground states, under
quantum and thermal perturbations, except in excluded regions of width
t6�U 5 around the lines of infinite degeneracy.

6. PERTURBATION EXPANSION FOR THE 3-BAND
HUBBARD MODEL

In all the models considered in the previous section, the Coulomb
interactions between the particles were strictly on-site. In this section we
apply our perturbation method to the 3-band Hubbard model, as an example
of how to proceed when the leading interaction has nonzero range.

6.1. The Original Interaction

The Hamiltonian H04 in (1.2) is of unit range, since it consists of both
on-site and nearest neighbor interactions. This necessitates the use of
``protection zones'' [see Section 2.2] for the proper treatment of the local
character of the operators that arise in our perturbation expansion. We
define R-plaquettes, Wx , through (2.23) with R=1, and sets BX through
(2.24). In particular, for X :=(xy), x # A, y # B, |x& y|=1, BX is given by
the set of sites shown in Fig. 8 (or a rotation and�or reflection of it).

It consists of two copper sites and four oxygen sites. We restrict our
attention to parameter values in the following ranges:

Ud>=d ; 2>0; Ud>>Up>Upd>0; Ud>>2; tpd>0; Ud>>tpd

(6.1)

Fig. 8. Set BX formed by the bond (xy) and its protection zone for the 3-band Hubbard
model.
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and normalize the ground state energy of H04 to zero. The unperturbed
Hamiltonian is given in terms of an interaction 80=[80Y], nonzero, if
Y=(xy) denotes a pair of nearest neighbor sites such that x # A and y # B.
The interaction 80X is defined as follows.

Udnd
x+ nd

x&+=d (nd
x&1) if Y=[x], x # A

80Y={Upn p
y+ n p

y&+=pn p
y if Y=[ y], y # B (6.2)

Upd nd
xn p

y if Y=(xy) , x # A, y # B

For parameter values satisfying (6.1), the energy of a configuration on Y,
with respect to the interaction 80Y , is minimum (and equal to zero) when
there is a single hole at x and none at y. Hence in a ground state configura-
tion of H04 , each oxygen site is empty while each copper site is singly
occupied by a hole, the total number of holes in 4 being equal to the total
number of copper sites, |A|. However, the ground state of H04 has a
2 |A|-fold spin degeneracy.

The interaction corresponding to the 3-band Hubbard Hamiltonian
H4 (1.2), with the normalization introduced above, is given by 8=[8Y ]
where

8Y=80Y+QY (6.3)

and QY=0 unless Y is a pair of nearest-neighbor sites, in which case

Q[xy]=tpd[ p-
y_ dx_+d -

y_px_] (6.4)

We define suitable projection operators on the Hilbert space H4 as in
Section 2.2. Let P0

BX
denote an operator which projects onto (local) ground

states of the interaction 80 . The projection operators P1
BX

and P2
BX

are
defined by (2.25) and (2.26) of Section 2.2. Using the resulting partition of
unity

1=P0
BX

+P1
BX

+P2
BX

(6.5)

we can decompose the perturbation interaction QX of (6.4) as in (2.37). It
is clear from the structure of the lattice [Fig. 6] and the definition (6.4) of
QX that Q00

BY
=0. Hence

QX=Q01
BX

+QR
BX

(6.6)

where Q01
BX

and QR
BX

��defined in (2.39) and (2.40)��are linear in the hopping
amplitude tpd . Also, due to our choice of ground-state energy normalization,

800
0BX

=0 (6.7)
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6.2. First-Order Perturbation for the 3-Band Hubbard Model

As explained in Section 2, we first search for a unitary transformation
U (1)(tpd )=exp(tpdS1) with

S1 :=:
X

S1BX
(6.8)

which eliminates the first-order off-diagonal terms Q01
BX

of the perturbation
interaction Q. From (2.50) we have that

S1BX
=P0

BX

QBX

E0&E1

P1
BX

+P1
BX

QBX

E1&E0

P0
BX

(6.9)

where

E0=0 and E1=Upd+2 (6.10)

with

2 :==p&=d (6.11)

Hence

S1BX
=

1
Upd+2

[P1
BX

QBX
P0

BX
&P0

BX
QBX

P1
BX

] (6.12)

for X#(xy) , x # A and y # B. A straightforward calculation along the lines
sketched in Section 2.3 shows that the transformed classical interaction has
nonzero terms only for nearest-neighbor pairs X. These terms are [recall
(6.7)]:

8 (1)
0BX

=
1
2

P0
BX

ad S1BX
(Q01

BX
) P0

BX

=&
t2

pd

(Upd+2)
P0

BX _ :
_=+, &

d -
x_py_ p-

y_ dx_& P0
BX

=&
t2

pd

(Upd+2)
P0

BX \ :
_=+, &

nd
x_(1&n p

y_)+ P0
BX

=&
t2

pd

(Upd+2)
P0

BX
(6.13)
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In the last line we used the identity

P0
BX \ :

_=+, &

nd
x_(1&n p

y_)+ P0
BX

=P0
BX \ :

_=+, &

nd
x_ + P0

BX
=1 (6.14)

We conclude that, to this order, the change in the classical interaction
amounts to an irrelevant shift in the (local) ground-state energy that does
not introduce any new effect. In particular, it fails to reduce the spin
degeneracy. We need to go to the next order of our perturbation scheme
to find non-trivial contributions.

6.3. Second-Order Perturbation for the 3-Band
Hubbard Model

From Section 2.4 we obtain that, in second-order perturbation theory,
the leading classical part, 8 (2)

0 =[9 (2)
0 ]00, is of the form

8(2)
0 =8 (1)

0 +. (2)
0 (6.15)

where the nonzero terms of the latter are

. (2)
0BX

= 1
8P0

BX
[ad S1BX

(ad S1BX
(ad S1BX

(Q01
BX

)))] P0
BX

(6.16)

for X a nearest-neighbor pair, and

. (2)
0BY

=
1
8

:
C6

P0
BY

[ad S1BX4
(ad S1BX3

(ad S1BX2
(Q01

BX1
)))] P0

BY

+
1
2

:
C4

P0
Y [ad S2(BX4

_ BX3
)(V 01

2(BX1
_ BX2

))] P0
Y (6.17)

for Y=X _ X $, where X=(xy) , X $=( yz) are pairs of nearest neighbor
sites with x, z # A and y # B. See the notes at the bottom of Table 1 for the
definition of C6 and C4 .

The one-bond contribution (6.16) is again an uninteresting energy
shift:

. (2)
0B[x, y]

=
t4

pd

(Upd+2)3 P0
B[x, y]

(6.18)
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The two-bond contribution (6.17) can be cast in a more familiar-looking
form by making use of spin operators at copper sites, [see (3.19)]:

Sx := :
s, s$=+, &

d -
xs Sss$dxs$ (6.19)

One obtains

.(2)
0B[x, y, z]

=_
2t4

pd

(Up d+2)3& P0
B[x, y, z]

+Jeff P0
B[x, y, z] \Sx } Sz&

1
4+ P0

B[x, y, z]

(6.20)

with

Jeff :=
4t4

pd

(Upd+2)2 _ 1
Ud

+
2

22+Up& (6.21)

From (6.15), (6.13), (6.18) and (6.20) we recover the known fact that the
effective Hamiltonian for the 3-band Hubbard model in the low-energy
sector, to order 4 in the hopping amplitude tpd , is given by a S=1�2
antiferromagnetic Heisenberg model on the square lattice of copper sites.
This is the same interaction obtained for the one-band Hubbard model to
order t2 [Table 2]. This observation justifies, in part, the use of the simpler
one-band model in studies of magnetic properties of undoped cuprates.
Our contribution is, once again, to be able to provide convergent estimates
on remainder terms in the transformed interaction.
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